[Lumière lente dans les amplificateurs optiques à semi-conducteurs : Modélisation et caractérisation du bruit additif]
Nous présentons un modèle amélioré prédisant la réponse RF de l'amplificateur optique à semi-conducteurs (SOA). Ce modèle reste valide quelles que soient les conditions expérimentales : en effet, il prend en compte la saturation dynamique du SOA, caractérisée par une expérience très simple, et ne repose que sur peu de paramètres d'ajustement, qui dépendent du matériau et non du courant d'injection ou de la puissance optique d'entrée. On utilise ce nouveau modèle pour caractériser le bruit additif du SOA, afin d'analyser les effets du ralentissement de la lumière sur les propriétés de la liaison opto-hyperfréquence.
We developed an improved model in order to predict the RF behavior of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and bias current. We used this new model to analyze and model the additive noise of the SOA in order to fully characterize the influence of the slow light effect on the microwave photonics link properties.
Mot clés : Lumière lente, Amplificateur optique à semi-conducteurs (SOA), Opto-hyperfréquence, Bruit
Perrine Berger 1, 2 ; Mehdi Alouini 1, 3 ; Jérôme Bourderionnet 1 ; Fabien Bretenaker 2 ; Daniel Dolfi 1
@article{CRPHYS_2009__10_10_991_0, author = {Perrine Berger and Mehdi Alouini and J\'er\^ome Bourderionnet and Fabien Bretenaker and Daniel Dolfi}, title = {Slow light using semiconductor optical amplifiers: {Model} and noise characteristics}, journal = {Comptes Rendus. Physique}, pages = {991--999}, publisher = {Elsevier}, volume = {10}, number = {10}, year = {2009}, doi = {10.1016/j.crhy.2009.10.005}, language = {en}, }
TY - JOUR AU - Perrine Berger AU - Mehdi Alouini AU - Jérôme Bourderionnet AU - Fabien Bretenaker AU - Daniel Dolfi TI - Slow light using semiconductor optical amplifiers: Model and noise characteristics JO - Comptes Rendus. Physique PY - 2009 SP - 991 EP - 999 VL - 10 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2009.10.005 LA - en ID - CRPHYS_2009__10_10_991_0 ER -
%0 Journal Article %A Perrine Berger %A Mehdi Alouini %A Jérôme Bourderionnet %A Fabien Bretenaker %A Daniel Dolfi %T Slow light using semiconductor optical amplifiers: Model and noise characteristics %J Comptes Rendus. Physique %D 2009 %P 991-999 %V 10 %N 10 %I Elsevier %R 10.1016/j.crhy.2009.10.005 %G en %F CRPHYS_2009__10_10_991_0
Perrine Berger; Mehdi Alouini; Jérôme Bourderionnet; Fabien Bretenaker; Daniel Dolfi. Slow light using semiconductor optical amplifiers: Model and noise characteristics. Comptes Rendus. Physique, Volume 10 (2009) no. 10, pp. 991-999. doi : 10.1016/j.crhy.2009.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.005/
[1] Microwave photonics, J. Lightwave Technol., Volume 27 (2009), pp. 314-335
[2] A tutorial on microwave photonic filters, J. Lightwave Technol., Volume 24 (2006), pp. 201-229
[3] et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays, Appl. Opt., Volume 35 (1996), pp. 5293-5300
[4] et al. Slow light in semiconductor quantum wells, Opt. Lett., Volume 29 (2004), pp. 2291-2293
[5] et al. Impact of the gain saturation dynamics in semiconductor optical amplifiers on the characteristics of an analog optical link, J. Lightwave Technol., Volume 23 (2005), pp. 2420-2426
[6] et al. Slow light in a semiconductor waveguide at gigahertz frequencies, Opt. Express, Volume 13 (2005), pp. 8136-8145
[7] et al. Controlling microwave signals by means of slow and fast light effects in SOA-EA structures, IEEE Photon. Technol. Lett., Volume 19 (2007), pp. 1589-1591
[8] Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers, International Topical Meeting on Slow and Fast Light, 2009 OSA Technical Digest, Optical Society of America, 2009
[9] Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers, J. Opt. Soc. Am. B, Volume 5 (1988), pp. 147-159
[10] et al. Slow light based on coherent population oscillation in quantum dots at room temperature, IEEE J. Quantum Electron., Volume 43 (2007), pp. 196-205
[11] et al. Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm, Opt. Express, Volume 16 (2008), pp. 2141-2146
[12] et al. Static gain saturation model of quantum-dot semiconductor optical amplifiers, IEEE J. Quantum Electron., Volume 44 (2008), pp. 658-666
[13] Wideband semiconductor optical amplifier steady-state numerical model, IEEE J. Quantum Electron., Volume 37 (2001), pp. 439-447
[14] Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers, Appl. Phys. Lett., Volume 88 (2006), p. 061102
[15] Diode Lasers and Photonic Integrated Circuits, Wiley & Sons, 1995
[16] Optoelectronics, Cambridge, 2002
[17] Evidence of the importance of Auger recombination for InGaAsP lasers, Electron. Lett., Volume 20 (1984), pp. 85-86
[18] Theory and measurement techniques for the noise figure of optical amplifiers, Opt. Fiber Technol., Volume 6 (2000), pp. 122-154
[19] Lightwave systems with optical amplifiers, J. Lightwave Technol., Volume 7 (1989), pp. 1071-1082
[20] et al. Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications, Opt. Lett., Volume 32 (2007), pp. 650-652
Cité par Sources :
Commentaires - Politique