Recent progress in the field of quantum dot/dash based semiconductor optical amplifiers (SOAs) for slow and fast light is discussed. Room temperature fast light has been obtained in InAs/InP QDash based SOAs by means of coherent population oscillation and four wave mixing (FWM) effects. Typical optical delays amount to 55 ps at 2 GHz. Growth optimization of the QDashes allowed us to achieve high modal gain, leading to very similar performances, e.g. gain and FWM efficiency, to those of a bulk SOA. A novel approach based on linear spectrograms is also introduced to measure the phase shift induced by wave mixing in an SOA.
Les progrès récents dans le domaine des amplificateurs optiques à semi-conducteurs (SOA) à base de boîtes/batônnets quantiques pour la lumière lente et rapide sont discutés. Une lumière rapide à température ambiante a été obtenue dans des SOA à batônnets quantiques InAs/InP par les phénomènes d'oscillation cohérente de population et de mélange à quatre ondes (FWM). Des valeurs typiques de retards optiques de 55 ps ont été obtenues à une fréquence de 2 GHz. L'optimisation de la croissance des batônnets quantiques permet d'obtenir un gain modal élevé, conduisant à des performances presque identiques, en termes de gain et d'efficacité FWM, à celles d'un SOA à matériau massif. Une nouvelle approche basée sur la technique des spectrogrammes linéaires est également introduite pour mesurer le déphasage induit par le mélange d'ondes dans un SOA.
Mots-clés : Lumière lente, Amplificateurs à semi-conducteurs, Boîte quantique, Effets non-linéaires, Oscillation cohérente de population
Anthony Martinez 1; J.-G. Provost 2; Guy Aubin 1; R. Brenot 2; J. Landreau 2; F. Lelarge 2; Abderrahim Ramdane 1
@article{CRPHYS_2009__10_10_1000_0, author = {Anthony Martinez and J.-G. Provost and Guy Aubin and R. Brenot and J. Landreau and F. Lelarge and Abderrahim Ramdane}, title = {Slow and fast light in quantum dot based semiconductor optical amplifiers}, journal = {Comptes Rendus. Physique}, pages = {1000--1007}, publisher = {Elsevier}, volume = {10}, number = {10}, year = {2009}, doi = {10.1016/j.crhy.2009.12.006}, language = {en}, }
TY - JOUR AU - Anthony Martinez AU - J.-G. Provost AU - Guy Aubin AU - R. Brenot AU - J. Landreau AU - F. Lelarge AU - Abderrahim Ramdane TI - Slow and fast light in quantum dot based semiconductor optical amplifiers JO - Comptes Rendus. Physique PY - 2009 SP - 1000 EP - 1007 VL - 10 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2009.12.006 LA - en ID - CRPHYS_2009__10_10_1000_0 ER -
%0 Journal Article %A Anthony Martinez %A J.-G. Provost %A Guy Aubin %A R. Brenot %A J. Landreau %A F. Lelarge %A Abderrahim Ramdane %T Slow and fast light in quantum dot based semiconductor optical amplifiers %J Comptes Rendus. Physique %D 2009 %P 1000-1007 %V 10 %N 10 %I Elsevier %R 10.1016/j.crhy.2009.12.006 %G en %F CRPHYS_2009__10_10_1000_0
Anthony Martinez; J.-G. Provost; Guy Aubin; R. Brenot; J. Landreau; F. Lelarge; Abderrahim Ramdane. Slow and fast light in quantum dot based semiconductor optical amplifiers. Comptes Rendus. Physique, Slow-light: Fascinating physics or potential applications?, Volume 10 (2009) no. 10, pp. 1000-1007. doi : 10.1016/j.crhy.2009.12.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.12.006/
[1] et al. J. Lightwave Technol., 24 (2006) no. 12, p. 4642
[2] Opt. Express, 14 (2006) no. 6, p. 2317
[3] Opt. Express, 13 (2005) no. 20, p. 8136
[4] IEEE J. Select. Top. Quantum Electron., 14 (2008) no. 3, p. 691
[5] J. Lightwave Technol., 23 (2005) no. 12, p. 4046
[6] Opt. Express, 15 (2007) no. 2, p. 747
[7] IEEE Photon. Technol. Lett., 19 (2007) no. 20, p. 1589
[8] et al. Nat. Photon., 1 (2007), p. 319
[9] IEEE Photon. Technol. Lett., 21 (2009) no. 3, p. 167
[10] IEEE Photon. Technol. Lett., 19 (2007) no. 15, p. 1145
[11] Opt. Express, 17 (2009) no. 22, p. 20584
[12] J. Opt. Soc. Am. B, 5 (1988) no. 1, p. 147
[13] IEEE J. Quantum Electron., 26 (1990) no. 5, p. 865
[14] Opt. Express, 14 (2006) no. 11, p. 4800
[15] Opt. Express, 15 (2007) no. 16, p. 9963
[16] Electron. Lett., 41 (2005) no. 16, p. 922
[17] Opt. Express, 13 (2005) no. 24, p. 9909
[18] IET Electron. Lett., 41 (2005) no. 24, p. 1347
[19] Opt. Express, 13 (2005) no. 20, p. 8136
[20] IEEE Photon. Technol. Lett., 19 (2007) no. 15, p. 1145
[21] Appl. Phys. Lett., 40 (1982) no. 11, p. 939
[22] et al. IEEE J. Quantum Electron., 22 (1986) no. 9, p. 1915
[23] Appl. Phys. Lett., 88 (2006) no. 6, p. 061102
[24] Opt. Lett., 32 (2007) no. 19, p. 2894
[25] Appl. Phys. Lett., 93 (2008) no. 9, p. 091116
[26] Opt. Lett., 34 (2009) no. 7, p. 929
[27] IEEE Photon. Technol. Lett., 13 (2001) no. 8, p. 767
[28] J. Cryst. Growth, 278 (2005), p. 346
[29] IEEE J. Select. Top. Quantum Electron., 13 (2007) no. 1, p. 111
[30] Appl. Phys. Lett., 89 (2006) no. 24, p. 241123
[31] Appl. Phys. Lett., 94 (2009) no. 2, p. 021107
[32] IET Electron. Lett., 38 (2004) no. 22, p. 1350
[33] et al. Opt. Express, 16 (2008) no. 23, p. 19072
[34] IEEE J. Quantum Electron., 28 (1992) no. 1, p. 151
[35] et al. IET Electron. Lett., 33 (1997) no. 12, p. 1083
[36] et al. Appl. Phys. Lett., 92 (2008) no. 21, p. 211101
[37] et al. Opt. Lett., 27 (2002) no. 15, p. 1315
[38] J.-G. Provost, et al., in: Proceedings European Conference on Optical Communication, 2005, paper Tu1.5.5
[39] et al. IEEE Photon. Technol. Lett., 19 (2007) no. 8, p. 535
[40] IEEE J. Lightwave Technol., 25 (2007) no. 3, p. 891
Cited by Sources:
Comments - Policy