[Mesures de la constante de Boltzmann à l'aide d'un thermomètre résistif à bruit Johnson étalonné par une source de tension quantique]
La valeur de la constante de Boltzmann recommandée par CODATA résulte presque uniquement de mesures obtenues par thermométrie à gaz avec une incertitude relative de [P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633–730]. Cet article présente une mesure électrique de la constante de Boltzmann effectuée en comparant le bruit Johnson d'une résistance placée à la température du point triple de l'eau avec un signal pseudo aléatoire généré par un synthétiseur quantique de tension alternative. La détermination du rapport des deux puissances spectrales obtenues relie la constante de Boltzmann à la constante de Planck. Une analyse détaillée des incertitudes obtenues pour des mesures récentes de bruit montre que la constante de Boltzmann peut être obtenue avec une incertitude relative inférieure à . Un tel niveau d'incertitude rend pertinente la mise en œuvre de cette méthode nouvelle pour mesurer la constante de Boltzmann.
Currently, the CODATA value of the Boltzmann constant is dominated by a single gas-based thermometry measurement with a relative standard uncertainty of [P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633–730]. This article describes an electronic approach to measuring the Boltzmann constant that compares Johnson noise from a resistor at the water triple point with a pseudo-random noise generated using quantized ac-voltage synthesis. Measurement of the ratio of the two power spectral densities links Boltzmann's constant to Planck's constant. Recent experiments and detailed uncertainty analysis indicate that Boltzmann's constant can presently be determined using Johnson noise with a relative standard uncertainty below , which would support both historic and new determinations.
Mot clés : Constante de Boltzmann, Bruit Johnson, Réseau de jonctions Josephson, Mesure de bruit thermique, Température
Samuel Benz 1 ; D. Rod White 2 ; JiFeng Qu 1 ; Horst Rogalla 3 ; Weston Tew 4
@article{CRPHYS_2009__10_9_849_0, author = {Samuel Benz and D. Rod White and JiFeng Qu and Horst Rogalla and Weston Tew}, title = {Electronic measurement of the {Boltzmann} constant with a quantum-voltage-calibrated {Johnson} noise thermometer}, journal = {Comptes Rendus. Physique}, pages = {849--858}, publisher = {Elsevier}, volume = {10}, number = {9}, year = {2009}, doi = {10.1016/j.crhy.2009.10.008}, language = {en}, }
TY - JOUR AU - Samuel Benz AU - D. Rod White AU - JiFeng Qu AU - Horst Rogalla AU - Weston Tew TI - Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer JO - Comptes Rendus. Physique PY - 2009 SP - 849 EP - 858 VL - 10 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2009.10.008 LA - en ID - CRPHYS_2009__10_9_849_0 ER -
%0 Journal Article %A Samuel Benz %A D. Rod White %A JiFeng Qu %A Horst Rogalla %A Weston Tew %T Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer %J Comptes Rendus. Physique %D 2009 %P 849-858 %V 10 %N 9 %I Elsevier %R 10.1016/j.crhy.2009.10.008 %G en %F CRPHYS_2009__10_9_849_0
Samuel Benz; D. Rod White; JiFeng Qu; Horst Rogalla; Weston Tew. Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer. Comptes Rendus. Physique, Volume 10 (2009) no. 9, pp. 849-858. doi : 10.1016/j.crhy.2009.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.008/
[1] Thermal agitation of electricity in conductors, Nature, Volume 119 (1927), pp. 50-51
[2] Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928), pp. 97-109
[3] Thermal agitation of electric charge in conductors, Phys. Rev., Volume 32 (1928), pp. 110-113
[4] Irreversibility and generalized noise, Phys. Rev., Volume 83 (1951), pp. 34-40
[5] On the motion—required by the molecular kinetic theory of heat—of small particles suspended in a stationary liquid, Annalen der Physik, Volume 17 (1905), pp. 549-560
[6] A self-calibrating rhodium–iron resistive SQUID thermometer for the range below 0.5 K, J. Low Temp. Phys., Volume 40 (1980), pp. 553-569
[7] Josephson noise thermometry with HTS devices, IEEE Trans. Instrum. Meas., Volume 44 (1995), pp. 234-237
[8] Thermometry of arrays of tunnel junctions, Phys. Rev. Lett., Volume 73 (1994), p. 2903
[9] Primary electronic thermometry using the shot noise of a tunnel junction, Science, Volume 300 (2003), pp. 1929-1932
[10] Primary tunnel junction thermometry, Phys. Rev. Lett., Volume 101 (2008) (206801-1–4)
[11] Noise thermometry at ultralow temperatures, J. Low Temp. Phys., Volume 13 (1973), pp. 383-429
[12] The status of Johnson noise thermometry, Metrologia, Volume 33 (1996), pp. 325-335
[13] A new absolute noise thermometer at low temperatures, Can. J. Phys., Volume 37 (1959), pp. 1397-1406
[14] Noise thermometry for industrial and metrological applications at KFA Jülich (J.F. Schooley, ed.), Temperature, Its Measurement and Control in Science and Industry, vol. 6, Am. Inst. Phys., New York, 1992, pp. 993-996
[15] Detection of corruption in Gaussian processes with application to noise thermometry, Metrologia, Volume 35 (1998), pp. 787-798
[16] Preamplifier limitations on the accuracy of Johnson noise thermometers, Metrologia, Volume 37 (2000), pp. 11-23
[17] Progress towards a determination of the indium freezing point by Johnson noise thermometry (B. Fellmuth; J. Seidel; G. Scholz, eds.), Proceedings of TEMPMEKO 2001, VDE Verlag, Berlin, 2001, pp. 129-134
[18] H. Howener, Noise Thermometry in Nuclear Power Plants, KFA, Jülich GmbH, JUL-2107, 1986
[19] H. Saleh, E. Zimmerman, G. Brandenburg, H. Halling, Efficient FPGQ-based multistage two-path decimation filter for noise thermometer, in: Proceedings of ICM 2001, IEEE Catalog No. 01EX481, Rabat, Morocco, 2001, pp. 161–164
[20] M. Frigo, S.G. Johnson, FFTW, Massachusetts Institute of Technology, 2003, http://www.fftw.org
[21] An EMI test for Johnson noise thermometry (D. Zvizdic; L.G. Bermanec; T. Stasic; T. Veliki, eds.), Proceedings of TEMPMEKO 2004, Faculty of Mechanical Eng. and Naval Arch., Zagreb, 2004, pp. 485-490
[22] A noise thermometry investigation of the melting point of gallium at the NIM, Metrologia, Volume 43 (2006), pp. 273-277
[23] Johnson noise thermometry near the zinc freezing point using resistance-based scaling, Int. J. Thermophys., Volume 28 (2007), pp. 629-645
[24] A determination of the ratio of the zinc freezing point to the tin freezing point by noise thermometry, Int. J. Thermophys., Volume 29 (2008), pp. 1-17
[25] The measurement of thermal radiation at microwave frequencies, Rev. Sci. Instrum., Volume 17 (1964), pp. 268-275
[26] A pulse-driven programmable Josephson voltage standard, Appl. Phys. Lett., Volume 68 (1996), pp. 3171-3173
[27] Pulse-driven Josephson digital/analog converter, IEEE Trans. Appl. Supercond., Volume 8 (1998), pp. 42-47
[28] A new approach to Johnson noise thermometry using a Josephson quantized voltage source for calibration (B. Fellmuth; J. Seidel; G. Scholz, eds.), Proceedings of TEMPMEKO 2001, the 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, VDE Verlag, Berlin, April 2002 , pp. 37-44
[29] Johnson noise thermometry measurements using a quantum voltage noise source for calibration, IEEE Trans. Instrum. Meas., Volume 52 (2003), pp. 550-553
[30] An ac Josephson source for Johnson noise thermometry, IEEE Trans. Instrum. Meas., Volume 52 (2003), pp. 545-549
[31] Progress on Johnson noise thermometry using a quantum voltage noise source for calibration, IEEE Trans. Instrum. Meas., Volume 54 (2005), pp. 653-657
[32] A ratiometric method for Johnson noise thermometry using a quantized voltage noise source (D.C. Ripple, ed.), Temperature: Its Measurement and Control In Science and Industry, vol. 7, American Institute of Physics, Melville, New York, 2003, pp. 37-42
[33] Constraints on a synthetic-noise source for Johnson noise thermometry, Metrologia, Volume 45 (2008), pp. 93-101
[34] Measurement time and statistics for a noise thermometer with a synthetic-noise reference, Metrologia, Volume 45 (2008), pp. 395-405
[35] Improvements in the NIST Johnson noise thermometry system, IEEE Trans. Inst. Meas., Volume 58 (2009), pp. 884-890
[36] New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980), pp. 494-497
[37] Possible new effects in superconductive tunneling, Phys. Lett., Volume 1 (1962), pp. 251-253
[38] Measurement of small noise signals with a correlator and noise thermometry at low temperatures, Z. Angew. Phys., Volume 6 (1969), pp. 331-333
[39] E. Takano, Contact current distortion due to tunnel effect, in: Proceedings of the Forty-Fifth IEEE Holm Conference on Electrical Contacts, 4–6 Oct. 1999, Pittsburgh, PA, USA, pp. 136–140
[40] Reduced nonlinearities and improved temperature measurements for the NIST Johnson noise thermometer, Metrologia, Volume 46 (2009), pp. 512-524
[41] CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys., Volume 80 (2008), pp. 633-730
Cité par Sources :
☆ This work is a contribution of an agency of the U.S. government and is thus not subject to U.S. copyright.
Commentaires - Politique