Comptes Rendus
The new International System of Units / Le nouveau Système international d'unités
The ampere and the electrical units in the quantum era
[L'ampère et les unités électriques à l'ère quantique]
Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 92-128.

En fixant deux constantes fondamentales de la mécanique quantique, la constante de Planck h et la charge élémentaire e, le « Système international » (SI) d'unités révisé prend explicitement en considération la mécanique quantique. Cette évolution souligne également l'importance de cette théorie, qui sous-tend les réalisations les plus exactes des unités. À partir du 20 mai 2019, les nouvelles définitions du kilogramme et de l'ampère, établies à partir des valeurs fixées de h et de e, respectivement, auront un impact particulier sur la métrologie électrique. L'effet Josephson (JE) et l'effet Hall quantique (QHE), utilisés pour conserver les étalons de tension et de résistance avec une reproductibilité sans précédent depuis 1990, permettront désormais de réaliser le volt et l'ohm sans les incertitudes héritées des anciennes définitions électromécaniques. De manière plus générale, le SI révisé soutiendra l'exploitation des effets quantiques pour réaliser les unités électriques, et ce, au bénéfice des utilisateurs. Nous passons en revue ici l'état de l'art actuel des étalons quantiques et discutons les nouvelles applications et perspectives en métrologie électrique.

By fixing two fundamental constants from quantum mechanics, the Planck constant h and the elementary charge e, the revised “Système international” (SI) of units endorses explicitly quantum mechanics. This evolution also highlights the importance of this theory that underpins the most accurate realizations of the units. From 20 May 2019 onwards, the new definitions of the kilogram and of the ampere, based on fixed values of h and e, respectively, will particularly impact the electrical metrology. The Josephson effect (JE) and the quantum Hall effect (QHE), used to maintain voltage and resistance standards with unprecedented reproducibility since 1990, will henceforth provide realizations of the volt and the ohm without the uncertainties inherited from the older electromechanical definitions. More broadly, the revised SI will support the exploitation of quantum effects to realize the electrical units, to the benefit of end-users. Here, we review the state-of-the-art of quantum standards and discuss further applications and perspectives in electrical metrology.

Publié le :
DOI : 10.1016/j.crhy.2019.02.003
Keywords: Quantum electrical standards, Josephson effect, Quantum Hall effect, Single-electron tunneling, Volt, Ohm, Ampere
Mot clés : Étalons électriques quantiques, Effet Josephson, Effet Hall quantique, Effet tunnel monoélectronique, Volt, Ohm, Ampère

Wilfrid Poirier 1 ; Sophie Djordjevic 1 ; Félicien Schopfer 1 ; Olivier Thévenot 1

1 Laboratoire national de métrologie et d'essais, 29, avenue Roger-Hennequin, 78197 Trappes, France
@article{CRPHYS_2019__20_1-2_92_0,
     author = {Wilfrid Poirier and Sophie Djordjevic and F\'elicien Schopfer and Olivier Th\'evenot},
     title = {The ampere and the electrical units in the quantum era},
     journal = {Comptes Rendus. Physique},
     pages = {92--128},
     publisher = {Elsevier},
     volume = {20},
     number = {1-2},
     year = {2019},
     doi = {10.1016/j.crhy.2019.02.003},
     language = {en},
}
TY  - JOUR
AU  - Wilfrid Poirier
AU  - Sophie Djordjevic
AU  - Félicien Schopfer
AU  - Olivier Thévenot
TI  - The ampere and the electrical units in the quantum era
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 92
EP  - 128
VL  - 20
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.02.003
LA  - en
ID  - CRPHYS_2019__20_1-2_92_0
ER  - 
%0 Journal Article
%A Wilfrid Poirier
%A Sophie Djordjevic
%A Félicien Schopfer
%A Olivier Thévenot
%T The ampere and the electrical units in the quantum era
%J Comptes Rendus. Physique
%D 2019
%P 92-128
%V 20
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2019.02.003
%G en
%F CRPHYS_2019__20_1-2_92_0
Wilfrid Poirier; Sophie Djordjevic; Félicien Schopfer; Olivier Thévenot. The ampere and the electrical units in the quantum era. Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 92-128. doi : 10.1016/j.crhy.2019.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.02.003/

[1] BIPM Resolutions of the CGPM: 11th meeting (11-20 October 1960) https://www.bipm.org/en/CGPM/db/11

[2] BIPM, The International System of Units (SI) [8th edition, 2006; updated in 2014]. https://www.bipm.org/en/measurement-units.

[3] P. Vigoureux A determination of the ampere, Metrologia, Volume 1 (1965), p. 3

[4] S. Awan; B. Kibble; J. Schurr Coaxial Electrical Circuits for Interference-Free Measurements, The Institution of Engineering and Technology, New York, 2011

[5] G. Trapon; O. Thévenot; J.C. Lacueille; G. Genevès Realization of the farad at bnm-lcie, CPEM 1998 Conf. Digest, 1998, p. 448

[6] G. Trapon; O. Thévenot; J. Lacueille; W. Poirier Determination of the von Klitzing constant RK in terms of the BNM calculable capacitor – fifteen years of investigations, Metrologia, Volume 40 (2003), pp. 159-171

[7] J. Schurr; V. Burkel; B.P. Kibble Realizing the farad from two ac quantum Hall resistances, Metrologia, Volume 46 (2009), p. 619

[8] W. Clothier A calculable standard of capacitance, Metrologia, Volume 1 (1964) no. 2, pp. 35-56

[9] F. Delahaye; A. Fau; D. Dominguez; M. Bellon Absolute determination of the farad and the ohm, and measurement of the quantized Hall resistance rH(2) at lcie, IEEE Trans. Instrum. Meas., Volume IM-36 (1987), p. 205

[10] G.W. Small; B.W. Ricketts; P.C. Coogan; B.J. Pritchard; M.M.R. Sovierzoski A new determination of the quantized Hall resistance in terms of the NML calculable cross capacitor, Metrologia, Volume 34 (1997), p. 241

[11] A.M. Thompson; D.G. Lampard A new theorem in electrostatics with applications to calculable standards of capacitance, Nature, Volume 177 (1956), pp. 888-890

[12] A. Jeffery; R.E. Elmquist; J.Q. Shields; L.H. Lee; M.E. Cage; S.H. Shields; R.F. Dziuba Determination of the von Klitzing constant and the fine-structure constant through a comparison of the quantized Hall resistance and the ohm derived from the NIST calculable capacitor, Metrologia, Volume 35 (1998) no. 83

[13] W. Clothier; G. Sloggett; H. Bairnsfather; M. Currey; D. Benjamin A determination of the volt, Metrologia, Volume 26 (1989), pp. 9-46

[14] T. Funck; V. Sienknecht Determination of the volt with the improved PTB voltage balance, IEEE Trans. Instrum. Meas., Volume 40 (1991) no. 158

[15] I.M. Mills; P.J. Mohr; T.J. Quinn; B.N. Taylor; E.R. Williams Redefinition of the kilogram: a decision whose time has come, Metrologia, Volume 42 (2005) no. 2, pp. 71-80

[16] I.M. Mills; P.J. Mohr; T.J. Quinn; B.N. Taylor; E.R. Williams Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1, Metrologia, Volume 43 (2006), pp. 227-246

[17] M.J.T. Milton; J.M. Wiliams; S.J. Bennett Modernizing the SI: towards an improved, accessible and enduring system, Metrologia, Volume 44 (2007), pp. 356-364

[18] BIPM, On the revision of the SI. Draft of the ninth SI Brochure, 2019. https://www.bipm.org/utils/en/pdf/si-revised-brochure/Draft-SI-Brochure-2019.pdf.

[19] G.D. Mahan Many-Particles Physics, Springer US, New York, 1981

[20] C. Kittel Introduction to Solid State Physics, Wiley, New York, 1966

[21] C. Kittel Quantum Theory of Solids, Wiley, New York, 1987

[22] J. Bardeen; L.N. Cooper; J.R. Schrieffer Theory of superconductivity, Phys. Rev., Volume 108 (1957), p. 1175

[23] B. Josephson Possible new effects in superconductive tunnelling, Phys. Lett., Volume 1 (1962), p. 251

[24] R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Dev., Volume 1 (1957), p. 223

[25] B.J. van Wees; H.V. Houten; C.W.J. Beenakker; J.G. Williamson; L.P. Kouwenhoven; D.V. der Marel; C.T. Foxon Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett., Volume 60 (1988), p. 848

[26] P.W. Anderson Absence of diffusion in certain random lattices, Phys. Rev., Volume 109 (1958), p. 1492

[27] E.A. Abrahams; P. Anderson; D.C. Licciardello; T.V. Ramakrishnan Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett., Volume 42 (1979), p. 673

[28] D.V. Averin; K.K. Likharev Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions, J. Low Temp. Phys., Volume 62 (1986), p. 345

[29] K. von Klitzing; G. Dorda; M. Pepper New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980), p. 494

[30] K.K. Likharev; A.B. Zorin Theory of the Bloch-wave oscillations in small Josephson junctions, J. Low Temp. Phys., Volume 59 (1985), p. 347

[31] B.D. Josepshon Phys. Rev. Lett., 1 (1962), p. 251

[32] S. Shapiro Josephson currents in superconducting tunneling: the effect of microwaves and another observations, Phys. Rev. Lett., Volume 11 (1963), pp. 80-82

[33] W.C. Stewart Current-voltage characteristics of Josephson junctions, Appl. Phys. Lett., Volume 12 (1968) no. 8, pp. 277-280 | DOI

[34] D.E. McCumber Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions, J. Appl. Phys., Volume 39 (1968) no. 7, pp. 3113-3118 | DOI

[35] R.L. Kautz Quasipotential and the stability of phase lock in nonhysteretic Josephson junctions, J. Appl. Phys., Volume 76 (1994), p. 5538

[36] R.L. Kautz Noise, chaos, and the Josephson voltage standard, Rep. Prog. Phys., Volume 59 (1996), p. 935

[37] R.L. Kautz Design and operation of series-array Josephson voltage standards (L. Crovini; T.J. Quinn, eds.), Metrology at the Frontiers of Physics and Technology, North-Holland, Amsterdam, 1992, pp. 259-296

[38] R.L. Kautz Shapiro steps in large-area metallic-barrier Josephson junctions, J. Appl. Phys., Volume 78 (1995) no. 9, pp. 5811-5819 | DOI

[39] J. Clarke Experimental comparison of the Josephson voltage-frequency relation in different superconductors, Phys. Rev. Lett., Volume 21 (1968), pp. 1566-1569 https://link.aps.org/doi/10.1103/PhysRevLett.21.1566 | DOI

[40] J.S. Tsai; A.K. Jain; J.E. Lukens High-precision test of the universality of the Josephson voltage-frequency relation, Phys. Rev. Lett., Volume 51 (1983), p. 316

[41] A.K. Jain; J.E. Lukens; J.S. Tsai Test for relativistic gravitational effects on charged particles, Phys. Rev. Lett., Volume 58 (1987), p. 1165

[42] F. Bloch Simple interpretation of the Josephson effect, Phys. Rev. Lett., Volume 21 (1968) no. 17, pp. 1241-1243

[43] F. Bloch Josephson effect in a superconducting ring, Phys. Rev. B, Volume 2 (1970), p. 109

[44] T.A. Fulton Implications of solid-state corrections to the Josephson voltage–frequency relation, Phys. Rev. B, Volume 7 (1973) no. 3, pp. 981-982

[45] A.A. Penin Measuring vacuum polarization with Josephson junctions, Phys. Rev. Lett., Volume 104 (2010)

[46] B.N. Taylor; W.H. Parker; D.N. Langenberg; A. Denenstein On the use of the ac Josephson effect to maintain standards of electromotive force, Metrologia, Volume 3 (1967) no. 4, p. 89 http://stacks.iop.org/0026-1394/3/i=4/a=001

[47] B.F. Field; T.F. Finnegan; J. Toots Volt maintenance at nbs via 2e/h: a new definition of the NBS volt, Metrologia, Volume 9 (1973) no. 4, p. 155 http://stacks.iop.org/0026-1394/9/i=4/a=003

[48] T. Witt 100 Years of Superconductivity, Taylor and Francis, London, 2011

[49] C.W.J. Beenakker; H. van Houten Quantum transport in semiconductor nanostructures, Solid State Phys., Volume 44 (1991), p. 1

[50] K. von Klitzing A personal view on the discovery. Physics and application of this quantum effect, Séminaire Poincaré 2: 25 Years of Quantum Hall Effect (QHE), 2004, p. 1

[51] B. Douçot; V. Pasquier Physics in strong magnetic field, Séminaire Poincaré 2: 25 years of Quantum Hall Effect (QHE), 2004, p. 17

[52] M. Buttiker; S.E. Nigg Role of coherence in resistance quantization, Eur. Phys. J. Spec. Top., Volume 172 (2009), p. 247

[53] M. Janben; O. Viehweger Introduction to the Theory of the Integer Quantum Hall Effect, Wiley and Sons, New York, 1994

[54] S.M. Girvin The Quantum Hall Effect: Novel Excitations and Broken Symmetries, Springer Verlag and Les Éditions de physique, Paris, 1999

[55] D. Yoshioka The Quantum Hall Effect, Springer, 1998

[56] M.O. Goerbig; P. Lederer Lecture Notes: Introduction to the Quantum Hall Effects, University of Paris-11, 2006

[57] B. Huckestein Scaling theory of the integer quantum Hall effect, Rev. Mod. Phys., Volume 67 (1995), p. 357

[58] A. Pruisken Universal singularities in the integral quantum Hall effect, Phys. Rev. Lett., Volume 61 (1988), p. 1297

[59] F. Evers; A. Mirlin Anderson transitions, Rev. Mod. Phys., Volume 80 (2008), p. 1355

[60] R. Landauer Electrical resistance of disordered one-dimensional lattices, Philos. Mag., Volume 21 (2011), p. 863

[61] D.C. Glattli Quantum shot noise of conductors and general noise measurement methods, Eur. Phys. J. Spec. Top., Volume 172 (2009), p. 163

[62] M. Buttiker; Y. Imry; R. Landauer; S. Pinhas Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, Volume 31 (1985), p. 6207

[63] M. Buttiker Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B, Volume 38 (1988), p. 9375

[64] R.B. Laughlin Quantized Hall conductivity in two dimensions, Phys. Rev. B, Volume 23 (1981), p. 5632

[65] Q. Niu; D.J. Thouless; Y. Wu Quantized Hall conductance as a topological invariant, Phys. Rev. B, Volume 31 (1985), p. 3372

[66] D.J. Thouless Topological interpretations of quantum Hall conductance, J. Math. Phys., Volume 35 (1994), p. 5362

[67] G. Watson Hall conductance as a topological invariant, Contemp. Phys., Volume 37 (1996), p. 127

[68] D.R. Yennie Integral quantum Hall effect for nonspecialists, Rev. Mod. Phys., Volume 59 (1987), p. 781

[69] F.W. Hehl; Y.N. Obukhov; B. Rosenow Is the quantum Hall effect influenced by the gravitational field?, Phys. Rev. Lett., Volume 93 (2004)

[70] A.A. Penin Quantum Hall effect in quantum electrodynamics, Phys. Rev. B, Volume 79 (2009) (Erratum Phys. Rev. B, 81, 2010, 089902)

[71] F. Schopfer; W. Poirier Testing universality of the quantum Hall effect by means of the Wheatstone bridge, J. Appl. Phys., Volume 102 (2007)

[72] A. Hartland; K. Jones; J.M. Williams; B.L. Gallagher; T. Galloway Direct comparison of the quantized Hall resistance in gallium arsenide and silicon, Phys. Rev. Lett., Volume 66 (1991), p. 969

[73] B. Jeckelmann; A.D. Inglis; B. Jeanneret Material, device, and step independence of the quantized Hall resistance, IEEE Trans. Instrum. Meas., Volume 44 (1995), p. 269

[74] B. Jeckelmann; B. Jeanneret The quantum Hall effect as an electrical resistance standard, Rep. Prog. Phys., Volume 64 (2001), p. 1603

[75] F. Delahaye; D. Domingez; F. Alexandre; J.-P. André; J.-P. Hirtz; M. Razeghi Precise quantized Hall resistance measurements in GaAs/AlxGa1xAs and InxGa1xAs/InP heterostructures, Metrologia, Volume 22 (1986), p. 103

[76] T.J.B.M. Janssen; N. Fletcher; R. Goebel; J. Williams; A. Tzalenchuk; R. Yakimova; S. Kubatkin; S. Lara-Avila; V. Falko Graphene, universality of the quantum Hall effect and redefinition of the SI system, New J. Phys., Volume 13 (2011)

[77] R. Ribeiro-Palau; F. Lafont; J. Brun-Picard; D. Kazazis; A. Michon; F. Cheynis; O. Couturaud; C. Consejo; B. Jouault; W. Poirier; F. Schopfer Quantum Hall resistance standard in graphene devices under relaxed experimental conditions, Nat. Nanotechnol., Volume 10 (2015), pp. 965-971

[78] B. Jeckelmann; B. Jeanneret; D. Inglis High-precision measurements of the quantized Hall resistance: experimental conditions for universality, Phys. Rev. B, Volume 55 (1997)

[79] B. Jeckelmann; A. Rüfenacht; B. Jeanneret; F. Overney; A. von Campenhausen; G. Hein Optimization of qhe-devices for metrological applications, IEEE Trans. Instrum. Meas., Volume 50 (2001), p. 218

[80] B. Jeanneret; B. Jeckelmann; H.J. Buhlman; B. Houdré; M. Llegems Influence of the device-width on the accuracy of quantization in the integer quantum Hall effect, IEEE Trans. Instrum. Meas., Volume 44 (1995), p. 254

[81] P. Lafarge; H. Pothier; E.R. Williams; D. Esteve; C. Urbina; M.H. Devoret Direct observation of macroscopic charge quantization, Z. Phys. B, Condens. Matter, Volume 85 (1991) no. 3, pp. 327-332 | DOI

[82] H. Pothier; P. Lafarge; C. Urbina; D. Estève; M.H. Devoret Single-electron pump based on charging effects, Europhys. Lett., Volume 17 (1992), p. 249

[83] H. Pothier Blocage de Coulomb et transfert d'électrons un par un, Université Paris-6, 1991 (Ph.D. thesis)

[84] L. Kouwenhoven; A. Johnson; N. van der Varrt; C. Harmans Quantized current in a quantum-dot turnstile using oscillating tunnel barriers, Phys. Rev. Lett., Volume 67 (1991) no. 12

[85] N. Feltin; F. Piquemal Determination of the elementary charge and the quantum metrological triangle experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009), pp. 267-296

[86] H. Grabert; M.H. Devoret Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, NATO ASI Ser., Ser. B: Phys., vol. 294, Plenum Press, 1991

[87] M.W. Keller; J.M. Martinis; N.M. Zimmerman; A.H. Steinbach Accuracy of electron counting using a 7-junction electron pump, Appl. Phys. Lett., Volume 69 (1996) no. 12, pp. 1804-1806

[88] M.W. Keller; A.L. Eichenberger; J.M. Martinis; N.M. Zimmermann A capacitance standard based on counting electrons, Science, Volume 285 (1999), p. 1706

[89] M.W. Keller; N.M. Zimmermann; A.L. Eichenberger Uncertainty budget for the nist electron counting capacitance standard, eccs-1, Metrologia, Volume 44 (2007), p. 505

[90] B. Camarota; H. Scherer; M.W. Keller; S.V. Lotkov; G. Willenberg; J. Ahlers Electron counting capacitance standard with an improved five-junction R-pump, Metrologia, Volume 49 (2012), pp. 8-14

[91] J.P. Pekola; O.P. Saira; V. Maisi; A. Kemppinen; M. Möttönen; Y.A. Pashkin; D. Averin Single-electron current sources: toward a refined definition of the ampere, Rev. Mod. Phys., Volume 85 (2013), pp. 1421-1472

[92] B. Kaestner; V. Kashcheyevs Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress, Rep. Prog. Phys., Volume 78 (2015)

[93] N.-H. Kaneko; S. Nakamura; Y. Okazaki A review of the quantum current standard, Meas. Sci. Technol., Volume 27 (2016)

[94] T.J. Quinn News from the bipm, Metrologia, Volume 26 (1989), p. 69

[95] CIPM Use of the von Klitzing constant to express the value of a reference standard of resistance as a function of the quantum Hall effect, Procès-verbaux des séances du Comité international des poids et mesures, 89th Meeting, 2000, p. 101

[96] T.J. Quinn News from the BIPM, Metrologia, Volume 26 (1989), pp. 69-74

[97] E. Braun Proceedings of the International School of Physics Enrico Fermi, Course CX, Metrology at the Frontier of Physics and Technology (L. Crovini; T.J. Quinn, eds.), North-Holland, 1992, p. 211

[98] https://kcdb.bipm.org BIPM, The BIPM key comparison database (KCDB), Key and supplementary comparisons (Appendix B), Comparison BIPM.EM-K12

[99] W. Poirier; F. Schopfer Resistance metrology based on the quantum Hall effect, Eur. Phys. J. Spec. Top., Volume 172 (2009), p. 207

[100] BIPM On the future revision of the SI https://www.bipm.org/en/measurement-units/rev-si/

[101] D.B. Newell; F. Cabiati; J. Fischer; K. Fujii; S.G. Karshenboim; H.S. Margolis; E. de Mirandés; P.J. Mohr; F. Nez; K. Pachucki; T.J. Quinn; B.N. Taylor; M. Wang; B.M. Wood; Z. Zhang The codata 2017 values of h, e, k, and NA for the revision of the SI, Metrologia, Volume 55 (2018), p. L13

[102] P.J. Mohr; B.D. Newell; B.N. Taylor; E. Tiesinga Data and analysis for the codata 2017 special fundamental constants adjustment, Metrologia, Volume 55 (2018), p. 125

[103] P.J. Mohr; D.B. Newell; B.N. Taylor Codata recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016)

[104] J. Brun-Picard; S. Djordjevic; D. Leprat; F. Schopfer; W. Poirier Practical quantum realization of the ampere from the elementary charge, Phys. Rev. X, Volume 6 (2016) | DOI

[105] L. Devoille; N. Feltin; B. Steck; B. Chenaud; S. Sassine; S. Djordevic; O. Séron; F. Piquemal Quantum metrological triangle experiment at LNE: measurements on a three-junction r-pump using a 20000:1 winding ratio cryogenic current comparator, Meas. Sci. Technol., Volume 23 (2012)

[106] H. Scherer; B. Camarota Quantum metrology triangle experiments: a status review, Meas. Sci. Technol., Volume 23 (2012)

[107] S. Sassine; B. Steck; N. Feltin; L. Devoille; B. Chenaud; W. Poirier; F. Schopfer; G. Spengler; O. Séron; F. Piquemal; S. Lotkhov The quantum metrology triangle experiment: quantization tests of an electron pump, Control. Autom., Volume 21 (2010), p. 609

[108] BIPM Draft for Appendix 2 of the SI Brochure for the “Revised SI”, Mise en pratique for the definition of the ampere and other electric units in the SI https://www.bipm.org/utils/en/pdf/si-mep/MeP-a-2018.pdf

[109] F. Delahaye; B. Jeckelmann Revised technical guidelines for reliable dc measurements of the quantized Hall resistance, Metrologia, Volume 40 (2003), p. 217

[110] T. Endo; M. Koyanagi; A. Nakamura High-accuracy Josephson potentiometer, IEEE Trans. Instrum. Meas., Volume 32 (1983) no. 1, pp. 267-271 | DOI

[111] F.L. Lloyd; C.A. Hamilton; J.A. Beall; D. Go; R.H. Ono; R.E. Harris A Josephson array voltage standard at 10 V, IEEE Electron Device Lett., Volume 8 (1987) no. 10, pp. 449-450 | DOI

[112] R. Pöpel The Josephson effect and voltage standards, Metrologia, Volume 29 (1992) no. 2, p. 153 http://stacks.iop.org/0026-1394/29/i=2/a=005

[113] C.A. Hamilton Josephson voltage standards, Rev. Sci. Instrum., Volume 71 (2000) no. 10, pp. 3611-3623 | DOI

[114] J. Kohlmann; R. Behr; T. Funck Josephson voltage standards, Meas. Sci. Technol., Volume 14 (2003) no. 8, p. 1216 http://stacks.iop.org/0957-0233/14/i=8/a=305

[115] B. Jeanneret; S.P. Benz Application of the Josephson effect in electrical metrology, Eur. Phys. J. Spec. Top., Volume 172 (2009) no. 1, pp. 181-206 | DOI

[116] R. Behr; O. Kieler; J. Kohlmann; F. Müller; L. Palafox Development and metrological applications of Josephson arrays at ptb, Meas. Sci. Technol., Volume 23 (2012)

[117] M.T. Levinsen; R.Y. Chiao; M.J. Feldman; B.A. Tucker An inverse ac Josephson effect voltage standard, Appl. Phys. Lett., Volume 31 (1977) no. 11, pp. 776-778 | DOI

[118] M. Gurvitch; M. Washington; H. Huggins; J. Rowell Preparation and properties of nb Josephson junctions with thin Al layers, IEEE Trans. Magn., Volume 19 (1983) no. 3, pp. 791-794 | DOI

[119] C.A. Hamilton; F.L. Lloyd; K. Chieh; W.C. Goeke A 10-V Josephson voltage standard, IEEE Trans. Instrum. Meas., Volume 38 (1989) no. 2, pp. 314-316 | DOI

[120] F. Müller; R. Pöpel; J. Kohlmann; J. Niemeyer; W. Meier; T. Weimann; L. Grimm; F.-W. Dunschede; P. Gutmann Optimized 1 V and 10 V Josephson series arrays, IEEE Trans. Instrum. Meas., Volume 46 (1997) no. 2, pp. 229-232 | DOI

[121] BIPM, The BIPM key comparison database (KCDB), Key and supplementary comparisons (Appendix B), Comparison BIPM.EM-K10.b. https://kcdb.bipm.org.

[122] B.M. Wood; S. Solve A review of Josephson comparison results, Metrologia, Volume 46 (2009) no. 6, p. R13 http://stacks.iop.org/0026-1394/46/i=6/a=R01

[123] S. Solve; R. Chayramy; S. Djorjevic; O. Séron Comparison of the Josephson voltage standards of the LNE and the BIPM (part of the ongoing BIPM key comparison bipm.em-k10.b), Metrologia, Volume 46 (2009) no. 1A http://stacks.iop.org/0026-1394/46/i=1A/a=01002

[124] Hypres https://www.hypres.com/hypres-primary-voltage-standard/

[125] Supracon http://www.supracon.com/en/standards.html

[126] C.A. Hamilton; C.J. Burroughs; R.L. Kautz Josephson d/a converter with fundamental accuracy, IEEE Trans. Instrum. Meas., Volume 44 (1995) no. 2, pp. 223-225 | DOI

[127] S.P. Benz; C.A. Hamilton; C.J. Burroughs; T.E. Harvey; L.A. Christian Stable 1 Volt programmable voltage standard, Appl. Phys. Lett., Volume 71 (1997) no. 13, pp. 1866-1868 | DOI

[128] H. Yamamori; M. Ishizaki; A. Shoji; P.D. Dresselhaus; S.P. Benz 10 V programmable Josephson voltage standard circuits using NbN/TiNx/NbN/TiNx/NbN double-junction stacks, Appl. Phys. Lett., Volume 88 (2006) no. 4 | DOI

[129] F. Müller; R. Behr; T. Weimann; L. Palafox; D. Olaya; P.D. Dresselhaus; S.P. Benz 1 V and 10 V SNS programmable voltage standards for 70 GHz, IEEE Trans. Appl. Supercond., Volume 19 (2009) no. 3, pp. 981-986 | DOI

[130] C.J. Burroughs; P.D. Dresselhaus; A. Rüfenacht; D. Olaya; M.M. Elsbury; Y. Tang; S.P. Benz Nist 10 V programmable Josephson voltage standard system, IEEE Trans. Instrum. Meas., Volume 60 (2011) no. 7, pp. 2482-2488 | DOI

[131] B. Baek; P.D. Dresselhaus; S.P. Benz Co-sputtered amorphous NbxSi1x barriers for Josephson-junction circuits, IEEE Trans. Appl. Supercond., Volume 16 (2006) no. 4, pp. 1966-1970 | DOI

[132] P.D. Dresselhaus; M.M. Elsbury; D. Olaya; C.J. Burroughs; S.P. Benz 10 volt programmable Josephson voltage standard circuits using NbSi-barrier junctions, IEEE Trans. Appl. Supercond., Volume 21 (2011) no. 3, pp. 693-696 | DOI

[133] F. Müller; T. Scheller; R. Wendisch; R. Behr; O. Kieler; L. Palafox; J. Kohlmann Nbsi barrier junctions tuned for metrological applications up to 70 GHz: 20 V arrays for programmable Josephson voltage standards, IEEE Trans. Appl. Supercond., Volume 23 (2013) no. 3 | DOI

[134] H. Yamamori; T. Yamada; H. Sasaki; A. Shoji A 10 V programmable Josephson voltage standard circuit with a maximum output voltage of 20 V, Supercond. Sci. Technol., Volume 21 (2008) no. 10 http://stacks.iop.org/0953-2048/21/i=10/a=105007

[135] H. Yamamori; T. Yamada; H. Sasaki; A. Shoji Improved fabrication yield for 10-V programmable Josephson voltage standard circuit including 524 288 NbN/TiN/NbN Josephson junctions, IEEE Trans. Appl. Supercond., Volume 20 (2010) no. 2, pp. 71-75 | DOI

[136] S. Djordjevic; O. Séron; S. Solve; R. Chayramy Direct comparison between a programmable and a conventional Josephson voltage standard at the level of 10 V, Metrologia, Volume 45 (2008) no. 4, p. 429 http://stacks.iop.org/0026-1394/45/i=4/a=008

[137] Y. Tang; V.N. Ojha; S. Schlamminger; A. Rüfenacht; C.J. Burroughs; P.D. Dresselhaus; S.P. Benz A 10 V programmable Josephson voltage standard and its applications for voltage metrology, Metrologia, Volume 49 (2012) no. 6, p. 635 http://stacks.iop.org/0026-1394/49/i=6/a=635

[138] A. Rüfenacht; Y. hua Tang; S. Solve; A.E. Fox; P.D. Dresselhaus; C.J. Burroughs; R.E. Schwall; R. Chayramy; S.P. Benz Automated direct comparison of two cryocooled 10 Volt programmable Josephson voltage standards, Metrologia, Volume 55 (2018) no. 4, p. 585 http://stacks.iop.org/0026-1394/55/i=4/a=585

[139] H.E. van den Brom; E. Houtzager; G. Rietveld; R. van Bemmelen; O. Chevtchenko Voltage linearity measurements using a binary Josephson system, Meas. Sci. Technol., Volume 18 (2007) no. 11, p. 3316 http://stacks.iop.org/0957-0233/18/i=11/a=008

[140] S. Chen; Y. Amagai; M. Maruyama; N. Kaneko Uncertainty evaluation of a 10 V rms sampling measurement system using the ac programmable Josephson voltage standard, IEEE Trans. Instrum. Meas., Volume 64 (2015) no. 12, pp. 3308-3314 | DOI

[141] C.J. Burroughs; A. Rüfenacht; S.P. Benz; P.D. Dresselhaus Systematic error analysis of stepwise-approximated ac waveforms generated by programmable Josephson voltage standards, IEEE Trans. Instrum. Meas., Volume 58 (2009) no. 4, pp. 761-767 | DOI

[142] O. Seron; S. Djordjevic; I. Budovsky; T. Hagen; R. Behr; L. Palafox Precision ac–dc transfer measurements with a Josephson waveform synthesizer and a buffer amplifier, IEEE Trans. Instrum. Meas., Volume 61 (2012) no. 1, pp. 198-204 | DOI

[143] I. Budovsky; R. Behr; L. Palafox; S. Djordjevic; T. Hagen Technique for the calibration of thermal voltage converters using a Josephson waveform synthesizer and a transconductance amplifier, Meas. Sci. Technol., Volume 23 (2012) no. 12 http://stacks.iop.org/0957-0233/23/i=12/a=124005

[144] A. Rüfenacht; N.E. Flowers-Jacobs; S.P. Benz Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology, Metrologia, Volume 55 (2018) no. 5, p. S152 http://stacks.iop.org/0026-1394/55/i=5/a=S152

[145] R. Behr; L. Palafox; G. Ramm; H. Moser; J. Melcher Direct comparison of Josephson waveforms using an ac quantum voltmeter, IEEE Trans. Instrum. Meas., Volume 56 (2007) no. 2, pp. 235-238 | DOI

[146] A. Rüfenacht; C.J. Burroughs; S.P. Benz Precision sampling measurements using ac programmable Josephson voltage standards, Rev. Sci. Instrum., Volume 79 (2008) no. 4 | DOI

[147] B. Jeanneret; F. Overney; A. Rüfenacht The Josephson locked synthesizer, Meas. Sci. Technol., Volume 23 (2012) no. 12 http://stacks.iop.org/0957-0233/23/i=12/a=124004

[148] L. Palafox; G. Ramm; R. Behr; W.G.K. Ihlenfeld; H. Moser Primary ac power standard based on programmable Josephson junction arrays, IEEE Trans. Instrum. Meas., Volume 56 (2007) no. 2, pp. 534-537 | DOI

[149] J. Lee; R. Behr; L. Palafox; A. Katkov; M. Schubert; M. Starkloff; A.C. Böck An ac quantum voltmeter based on a 10 V programmable Josephson array, Metrologia, Volume 50 (2013) no. 6, p. 612 http://stacks.iop.org/0026-1394/50/i=6/a=612

[150] W.G.K. Ihlenfeld; R.P. Landim An automated Josephson-based ac-voltage calibration system, IEEE Trans. Instrum. Meas., Volume 64 (2015) no. 6, pp. 1779-1784 | DOI

[151] Y. Amagai; M. Maruyama; T. Shimazaki; H. Yamamori; H. Fujiki; N. Kaneko Characterization of high-stability ac source using ac-programmable Josephson voltage standard system, Ottawa ( July 10–15, 2016 ), pp. 1-2 | DOI

[152] T. Yamada; C. Urano; H. Nishinaka; Y. Murayama; A. Iwasa; H. Yamamori; H. Sasaki; A. Shoji; Y. Nakamura Single-chip 10-V programmable Josephson voltage standard system based on a refrigerator and its precision evaluation, IEEE Trans. Appl. Supercond., Volume 20 (2010) no. 1, pp. 21-25 | DOI

[153] A. Rüfenacht; L.A. Howe; A.E. Fox; R.E. Schwall; P.D. Dresselhaus; C.J. Burroughs; S.P. Benz Cryocooled 10 V programmable Josephson voltage standard, IEEE Trans. Instrum. Meas., Volume 64 (2015) no. 6, pp. 1477-1482 | DOI

[154] M. Schubert; M. Starkloff; K. Peiselt; S. Anders; R. Knipper; J. Lee; R. Behr; L. Palafox; A.C. Böck; L. Schaidhammer; P.M. Fleischmann; H.-G. Meyer A dry-cooled ac quantum voltmeter, Supercond. Sci. Technol., Volume 29 (2016) no. 10 http://stacks.iop.org/0953-2048/29/i=10/a=105014

[155] J. Lee; J. Schurr; J. Nissila; L. Palafox; R. Behr The Josephson two-terminal-pair impedance bridge, Metrologia, Volume 47 (2010), p. 453

[156] S.P. Benz; C.A. Hamilton A pulse-driven programmable Josephson voltage standard, Appl. Phys. Lett., Volume 68 (1996) no. 22, pp. 3171-3173 | DOI

[157] S.P. Benz; C.A. Hamilton; C.J. Burroughs; T.E. Harvey; L.A. Christian; J.X. Przybysz Pulse-driven Josephson digital/analog converter voltage standard, IEEE Trans. Appl. Supercond., Volume 8 (1998) no. 2, pp. 42-47 | DOI

[158] N.E. Flowers-Jacobs; A.E. Fox; P.D. Dresselhaus; R.E. Schwall; S.P. Benz Two-volt Josephson arbitrary waveform synthesizer using Wilkinson dividers, IEEE Trans. Appl. Supercond., Volume 26 (2016) no. 6, pp. 1-7 | DOI

[159] O.F. Kieler; R. Behr; R. Wendisch; S. Bauer; L. Palafox; J. Kohlmann Towards a 1 V Josephson arbitrary waveform synthesizer, IEEE Trans. Appl. Supercond., Volume 25 (2015) no. 3, pp. 1-5 | DOI

[160] S. Pavan; R. Schreier; G. Temes Understanding Delta–Sigma Data Converters, Wiley, New York, 1987

[161] P.S. Filipski; H.E. van den Brom; E. Houtzager International comparison of quantum ac voltage standards for frequencies up to 100 kHz, Measurement, Volume 45 (2012) no. 9, pp. 2218-2225 http://www.sciencedirect.com/science/article/pii/S0263224112001170 | DOI

[162] H.E. van den Brom; E. Houtzager Voltage lead corrections for a pulse-driven ac Josephson voltage standard, Meas. Sci. Technol., Volume 23 (2012) no. 12 http://stacks.iop.org/0957-0233/23/i=12/a=124007

[163] T. Hagen; I. Budovsky; S.P. Benz; C.J. Burroughs Calibration system for ac measurement standards using a pulse-driven Josephson voltage standard and an inductive voltage divider, Wahington, DC, USA ( July 1–6, 2012 ), pp. 672-673 | DOI

[164] A. Sosso; P. Durandetto; B. Trinchera; O. Kieler; R. Behr; J. Kohlmann Characterization of a Josephson array for pulse-driven voltage standard in a cryocooler, Measurement, Volume 95 (2017), pp. 77-81 http://www.sciencedirect.com/science/article/pii/S0263224116305425 | DOI

[165] J. Kohlmann; O. Kieler; T. Scheller; B. Egeling; R. Wendisch; R. Behr Series arrays of nbsi barrier Josephson junctions for ac voltage standards, Ottawa ( July 10–15, 2016 ), pp. 1-2 | DOI

[166] N.E. Flowers-Jacobs; S.B. Waltman; A.E. Fox; P.D. Dresselhaus; S.P. Benz Josephson arbitrary waveform synthesizer with two layers of Wilkinson dividers and an FIR filter, IEEE Trans. Appl. Supercond., Volume 26 (2016) no. 6, pp. 1-7 | DOI

[167] R. Behr; O. Kieler; J. Lee; S. Bauer; L. Palafox; J. Kohlmann Direct comparison of a 1-V Josephson arbitrary waveform synthesizer and an ac quantum voltmeter, Metrologia, Volume 52 (2015) no. 4, p. 528 http://stacks.iop.org/0026-1394/52/i=4/a=528

[168] S.P. Benz; S.B. Waltman; A.E. Fox; P.D. Dresselhaus; A. Rüfenacht; J.M. Underwood; L.A. Howe; R.E. Schwall; C.J. Burroughs One-volt Josephson arbitrary waveform synthesizer, IEEE Trans. Appl. Supercond., Volume 25 (2015)

[169] P.D. Dresselhaus; M.M. Elsbury; S.P. Benz Tapered transmission lines with dissipative junctions, IEEE Trans. Appl. Supercond., Volume 19 (2009) no. 3, pp. 993-998 | DOI

[170] S.P. Benz; S.B. Waltman Pulse-bias electronics and techniques for a Josephson arbitrary waveform synthesizer, IEEE Trans. Appl. Supercond., Volume 24 (2014) no. 6, pp. 1-7 | DOI

[171] K. Zhou; J. Qu; S.P. Benz Zero-compensation method and reduced inductive voltage error for the ac Josephson voltage standard, IEEE Trans. Appl. Supercond., Volume 25 (2015) no. 5, pp. 1-6 | DOI

[172] J.A. Brevik; N.E. Flowers-Jacobs; A.E. Fox; E.B. Golden; P.D. Dresselhaus; S.P. Benz Josephson arbitrary waveform synthesis with multilevel pulse biasing, IEEE Trans. Appl. Supercond., Volume 27 (2017) no. 3, pp. 1-7 | DOI

[173] N.E. Flowers-Jacobs; S.B.W.A. Rüfenacht; A.E. Fox; J.A. Brevik; P.D. Dresselhaus; S.P. Benz Three volt pulse-driven Josephson arbitrary waveform synthesizer, Paris ( July 8–13, 2018 ), pp. 1-2

[174] B. Karlsen; K. Lind; H. Malmbekk; P. Ohlckers Development of high precision voltage dividers and buffer for ac voltage metrology up to 1 mHz, Ottawa ( July 10–15, 2016 ), pp. 1-2 | DOI

[175] I. Budovsky; L. Palafox 10 V transconductance amplifier for the comparison of Josephson standards and thermal converters, Ottawa ( July 10–15, 2016 ), pp. 1-2 | DOI

[176] L. Palafox; R. Behr; O. Kieler; J. Lee; I. Budovsky; S. Bauer; T. Hagen First metrological applications of the ptb 1 V Josephson arbitrary waveform synthesizer, Ottawa ( July 10–15, 2016 ), pp. 1-2 | DOI

[177] H.E. van den Brom; D. Zhao; E. Houtzager Voltage lead errors in an ac Josephson voltage standard: explanation in terms of standing waves, Ottawa ( July 10–15, 2016 ), pp. 1-2 | DOI

[178] R.C. Toonen; S.P. Benz Nonlinear behavior of electronic components characterized with precision multitones from a Josephson arbitrary waveform synthesizer, IEEE Trans. Appl. Supercond., Volume 19 (2009) no. 3, pp. 715-718 | DOI

[179] R. Behr; O. Kieler; B. Schumacher A precision microvolt-synthesizer based on a pulse-driven Josephson voltage standard, IEEE Trans. Instrum. Meas., Volume 66 (2017) no. 6, pp. 1385-1390 | DOI

[180] W. Poirier; F. Schopfer; J. Guignard; O. Thevenot; P. Gournay Application of the quantum Hall effect to resistance metrology, C. R. Phys., Volume 5 (2011), p. 171

[181] I.K. Harvey A precise low temperature dc ratio transformer, Rev. Sci. Instrum., Volume 43 (1972) no. 11, pp. 1626-1629

[182] F. Lafont; R. Ribeiro-Palau; D. Kazazis; A. Michon; O. Couturaud; C. Consejo; T. Chassagne; M. Zielinski; M. Portail; B. Jouault; F. Schopfer; W. Poirier Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide, Nat. Commun., Volume 6 (2015), p. 6806

[183] D. Drung; M. Götz; E. Pesel; J.-H. Storm; C. Assmann; M. Peters; T. Schurig Improving the stability of cryogenic current comparator setups, Supercond. Sci. Technol., Volume 22 (2009)

[184] C.A. Sanchez; B.M. Wood; A.D. Inglis Ccc bridge with digitally controlled current sources, IEEE Trans. Instrum. Meas., Volume 58 (2009), p. 1202

[185] J.M. Williams; T.J.B.M. Janssen; G. Rietveld; E. Houtzager An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements, Metrologia, Volume 47 (2010), p. 167

[186] W. Poirier; D. Leprat; F. Schopfer Towards 1010-accurate resistance bridge at LNE, Paris ( July 8–13, 2018 )

[187] F. Delahaye Series and parallel connection of multiterminal quantum Hall-effect devices, J. Appl. Phys., Volume 73 (1993), p. 7914

[188] F. Piquemal; J. Blanchet; G. Geneves; J.-P. André A first attempt to realize multiple-qhe devices series array resistance standards, IEEE Trans. Instrum. Meas., Volume 48 (1999), p. 296

[189] W. Poirier; A. Bounouh; K. Hayashi; F. Piquemal; G. Genevès; J.-P. André Rk/100 and rk/200 quantum Hall array resistance standards, J. Appl. Phys., Volume 92 (2002), p. 2844

[190] A. Bounouh; W. Poirier; F. Piquemal; G. Genevès; J.-P. André Quantum resistance standards with double 2DEG, IEEE Trans. Instrum. Meas., Volume 52 (2003), p. 555

[191] W. Poirier; A. Bounouh; F. Piquemal; J.-P. André A new generation of qhars: discussion about the technical criteria for quantization, Metrologia, Volume 41 (2004), p. 285

[192] J. Konemann; F.-J. Ahlers; E. Pesel; K. Pierz; H.W. Schumacher Magnetic field reversible serial quantum Hall arrays, IEEE Trans. Instrum. Meas., Volume 60 (2011), p. 2512

[193] T. Oe; S. Gorwadkar; T. Itatani; N.-H. Kaneko Development of 1 MΩ quantum Hall array resistance standards, IEEE Trans. Instrum. Meas., Volume 66 (2016), p. 1475

[194] J. Konemann; C. Leicht; F.-J. Ahlers; E. Pesel; K. Pierz; H.W. Schumacher Investigation of serial quantum Hall arrays as a quantum resistance standard, J. Phys. Conf. Ser., Volume 334 (2011)

[195] T. Oe; K. Matsuhiro; T. Itatani; S. Gorwadkar; S. Kiryu; N. Kaneko New design of quantized Hall resistance array device, IEEE Trans. Instrum. Meas., Volume 62 (2013), p. 1755

[196] A. Domae; T. Oe; S. Kiryu; N.-H. Kaneko Experimental demonstration of current dependence evaluation of voltage divider based on quantized Hall resistance voltage divider, IEEE Trans. Instrum. Meas., Volume 99 (2017), p. 1

[197] F. Schopfer; W. Poirier Quantum resistance standard accuracy close to the zero-dissipation state, J. Appl. Phys., Volume 114 (2013)

[198] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; Y. Zhang; S.V. Dubonos; I.V. Grigorieva; A.A. Firsov Electric field effect in atomically thin carbon films, Science, Volume 306 (2004), p. 666

[199] A.K. Geim; K.S. Novoselov The rise of graphene, Nat. Mater., Volume 6 (2007), p. 183

[200] A.C. Ferrari et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, Volume 7 (2015), p. 4598

[201] P.R. Wallace The band theory of graphite, Phys. Rev., Volume 71 (1947), p. 622

[202] A.H. CastroNeto; F. Guinea; N.M.R. Peres; K.S. Novoselov; A.K. Geim The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), p. 109

[203] S.D. Sarma; S. Adam; E.H. Hwang; E. Rossi Electronic transport in two-dimensional graphene, Rev. Mod. Phys., Volume 83 (2011), p. 407

[204] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; M.I. Katsnelson; S.V.D.I.V. Grigorieva; A.A. Firsov Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005), p. 197

[205] Y.B. Zhang; Y.W. Tan; H. Stormer; P. Kim Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, Volume 438 (2005), p. 201

[206] M.O. Goerbig Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys., Volume 83 (2011), p. 1193

[207] E. Pallecchi; F. Lafont; V. Cavaliere; F. Schopfer; D. Mailly; W. Poirier; A. Ouerghi High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen, Sci. Rep., Volume 4 (2014), p. 4558

[208] Y. Zhang; Z. Jiang; J.P. Small; M.S. Purewal; Y.-W. Tan; M. Fazlollahi; J.D. Chudow; J.A. Jaszczak; H.L. Stormer; P. Kim Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett., Volume 96 (2006)

[209] K.I. Bolotin; F. Ghahari; M.D. Shulman; H.L. Stormer; P. Kim Observation of the fractional quantum Hall effect in graphene, Nature, Volume 462 (2009), p. 196

[210] X. Du; I. Skachko; F. Duerr; A. Luican; E.Y. Andrei Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature, Volume 462 (2009), p. 192

[211] K. Nomura; A.H. MacDonald Quantum Hall ferromagnetism in graphene, Phys. Rev. Lett., Volume 96 (2006)

[212] M. Kharitonov Phase diagram for the ν=0 quantum Hall state in monolayer graphene, Phys. Rev. B, Volume 85 (2012)

[213] D.A. Abanin; K.S. Novoselov; U. Zeitler; P.A. Lee; A.K. Geim; L.S. Levitov Dissipative quantum Hall effect in graphene near the Dirac point, Phys. Rev. Lett., Volume 98 (2007)

[214] A.F. Young; C.R. Dean; L. Wang; H. Ren; P. Cadden-Zimansky; K. Watanabe; T. Taniguchi; J. Hone; K.L. Shepard; P. Kim Spin and valley quantum Hall ferromagnetism in graphene, Nat. Phys., Volume 8 (2012), p. 550

[215] K.S. Novoselov; Z. Jiang; Y. Zhang; S.V. Morozov; H.L. Stormer; U. Zeitler; J.-C. Maan; G.S. Boebinger; P. Kim; A.K. Geim Room-temperature quantum Hall effect in graphene, Science, Volume 315 (2007), p. 1379

[216] W. Poirier; F. Schopfer Can graphene set new standards?, Nat. Nanotechnol., Volume 5 (2010), p. 171

[217] F. Schopfer; W. Poirier Graphene-based quantum Hall effect metrology, Mater. Res. Soc. Bull., Volume 37 (2012), p. 1255

[218] T.J.B.M. Janssen; A. Tzalenchuk; S. Lara-Avila; S. Kubatkin; V.I. Falko Quantum resistance metrology using graphene, Rep. Prog. Phys., Volume 76 (2013)

[219] A.J.M. Giesbers; G. Rietveld; E. Houtzager; U. Zeitler; R. Yang; K.S. Novoselov; A.K. Geim; J.-C. Maan Quantum resistance metrology in graphene, Appl. Phys. Lett., Volume 93 (2009)

[220] J. Guignard; D. Leprat; D.C. Glattli; F. Schopfer; W. Poirier Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements, Phys. Rev. B, Volume 85 (2012)

[221] M. Wosczczyna; M. Friedemann; M. Götz; E. Pesel; K. Pierz; T. Weimann; F.J. Ahlers Precision quantization of Hall resistance in transferred graphene, Appl. Phys. Lett., Volume 100 (2012)

[222] A. Tzalenchuk; S. Lara-Avila; A. Kalaboukhov; S. Paolillo; M.S. Syvajarvi; R. Yakimova; O. Kazakova; T.J.B.M. Janssen; V. Falko; S. Kubatkin Towards a quantum resistance standard based on epitaxial graphene, Nat. Nanotechnol., Volume 5 (2010), p. 186

[223] T.J.B.M. Janssen; J.M. Williams; N.E. Fletcher; R. Goebel; A. Tzalenchuk; R. Yakimova; S. Lara-Avila; S. Kubatkin; V.I. Falko Precision comparison of the quantum Hall effect in graphene and gallium arsenide, Metrologia, Volume 49 (2012), p. 294

[224] F. Lafont Quantum Hall Effect in Graphene for Resistance Metrology: Disorder and Quantization, Université Paris Sud-Paris XI, 2015 https://hal.archives-ouvertes.fr/tel-01176183 (PhD thesis)

[225] C. Riedl; C. Coletti; U. Starke Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation, J. Phys. D, Appl. Phys., Volume 43 (2010)

[226] J.A. Alexander-Webber; J. Huang; D.K. Maude; T. Janssen; A. Tzalenchuk; V. Antonov; T. Yager; S. Lara-Avila; S. Kubatkin; R. Yakimova; R.J. Nicholas Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene, Sci. Rep., Volume 6 (2016)

[227] T.J.B.M. Janssen; A. Tzalenchuk; R. Yakimova; S. Kubatkin; S. Lara-Avila; S. Kopylov; V.I. Falko Anomalously strong pinning of the filling factor ν=2 in epitaxial graphene, Phys. Rev. B, Volume 83 (2011)

[228] F. Lafont; R. Ribeiro; Z. Han; S. Roche; V. Bouchiat; F. Schopfer; W. Poirier Anomalous dissipation mechanism and Hall quantization limit in polycrystalline graphene grown by chemical vapor deposition, Phys. Rev. B, Volume 90 (2014)

[229] B. Jabakhanji; A. Michon; C. Consejo; W. Desrat; M. Portail; A. Tiberj; M. Paillet; A. Zahab; F. Cheynis; F. Lafont; F. Schopfer; W. Poirier; F. Bertran; P. Le Fèvre; A. Taleb-Ibrahimi; D. Kazazis; W. Escoffier; B.C. Camargo; Y. Kopelevich; J. Camassel; B. Jouault Phys. Rev. B, 89 (2014)

[230] A. Michon; S. Vézian; A. Ouerghi; M. Zielinski; T. Chassagne; M. Portail Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition, Appl. Phys. Lett., Volume 97 (2010)

[231] J. Brun-Picard; R. Dagher; D. Mailly; A. Nachawaty; B. Jouault; A. Michon; W. Poirier; F. Schopfer Quantum Hall resistance standard in graphene grown by CVD on SiC: state-of-the-art of the experimental mastery, Paris ( July 8–13, 2018 )

[232] M. Kruskopf; D.M. Pakdehi; K. Pierz; S. Wundrack; R. Stosch; T. Dziomba; M. Götz; J. Baringhaus; J. Aprojanz; C. Tegenkamp; J. Lidzba; T. Seyller; F. Hohls; F.-J. Ahlers; H.W. Schumacher Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC, 2D Mater., Volume 3 (2016)

[233] Y. Yang; G. Cheng; P. Mende; I.G. Calizo; R.M. Feenstra; C. Chuang; C.-W. Liu; C.-I. Liu; G.R. Jones; A.R.H. Walker; R.E. Elmquist Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices, Carbon, Volume 115 (2017), p. 229

[234] H. He; K.H. Kim; A. Danilov; D. Montemurro; L. Yu; Y.W. Park; F. Lombardi; T. Bauch; K. Moth-Poulsen; T. Iakimov; R. Yakimova; P. Malmberg; C. Muller; S. Kubatkin; S. Lara-Avila Uniform doping of graphene close to the charge neutrality point by polymer-assisted spontaneous assembly of molecular dopants | arXiv

[235] C.-C. Kalmbach; J. Schurr; F.J. Ahlers; A. Muller; S. Novikov; N. Lebedeva; A. Satrapinski Towards a graphene-based quantum impedance standard, Appl. Phys. Lett., Volume 105 (2014)

[236] M. Woszczyna; M. Friedemann; T. Dziomba; T. Weimann; F.J. Ahlers Graphene p–n junction arrays as quantum-Hall resistance standards, Appl. Phys. Lett., Volume 99 (2011)

[237] J.P. Pekola; J.J. Vartiainen; M. Mottonen; O.P. Saira; M. Meschke; D.V. Averin Hybrid single-electron transistor as a source of quantized electric current, Nat. Phys., Volume 4 (2008), p. 120

[238] L.J. Geerligs; V.F. Anderegg; P.A.M. Holweg; J.E. Mooij; H. Pothier; D. Esteve; C. Urbina; M.H. Devoret Frequency-locked turnstile device for single electrons, Phys. Rev. Lett., Volume 64 (1990), p. 2691

[239] V.F. Maisi; Y.A. Pashkin; S. Kafanov; J.-S. Tsai; J.P. Pekola Parallel pumping of electrons, New J. Phys., Volume 11 (2009)

[240] A. Fujiwara; Y. Takahashi Manipulation of elementary charge in silicon charge-coupled device, Nature, Volume 410 (2001), p. 560

[241] A. Fujiwara; N. Zimmerman; Y. Ono; Y. Takahashi Current quantization due to a single-electron transfer in Si-wire charge-coupled devices, Appl. Phys. Lett., Volume 84 (2003) no. 8

[242] A. Fujiwara; K. Nishiguchi; Y. Ono Nanoampere charge pump by single-electron ratchet using silicon nanowire metal-oxide-semiconductor field-effect transistor, Appl. Phys. Lett., Volume 92 (2008) no. 4 | DOI

[243] Y. Ono; Y. Takahashi Electron pump by a combined single-electron field-effect transistor structure, Appl. Phys. Lett., Volume 82 (2003), p. 1221

[244] M. Blumenthal; B. Kaestner; L. Li; S. Giblin; T. Janssen; M. Pepper; D. Anderson; G. Jones; D. Ritchie Gigahertz quantized charge pumping, Nat. Phys., Volume 3 (2007), pp. 343-347

[245] B. Kaestner; V. Kashcheyevs; S. Amakawa; M.D. Blumenthal; L. Li; T.J.B.M. Janssen; G. Hein; K. Pierz; T. Weimann; U. Siegner; H.W. Schumacher Single-parameter nonadiabatic quantized charge pumping, Phys. Rev. B, Volume 77 (2008)

[246] B. Kaestner; C. Leicht; V. Kashcheyevs; K. Pierz; U. Siegner; H.W. Schumacher Single-parameter quantized charge pumping in high magnetic fields, Appl. Phys. Lett., Volume 94 (2009) no. 1 | DOI

[247] S.P. Giblin; S.J. Wright; J.D. Fletcher; M. Kataoka; M. Pepper; T.J.B.M. Janssen; D.A. Ritchie; C.A. Nicoll; D. Anderson; G.A.C. Jones An accurate high-speed single-electron quantum dot pump, New J. Phys. (2010)

[248] X. Jehl; B. Roche; M. Sanquer; R. Wacquez; M. Vinet; T. Charron; S. Djordjevic; L. Devoille Multi-charge pumping at 1 GHz with a hybrid metal/semiconductor device, Washington, DC ( July 1–6, 2012 ), pp. 250-251

[249] X. Jehl; B. Voisin; T. Charron; P. Clapera; S. Ray; B. Roche; M. Sanquer; S. Djordjevic; L. Devoille; R. Wacquez; M. Vinet Hybrid metal-semiconductor electron pump for quantum metrology, Phys. Rev. X, Volume 3 (2013)

[250] F. Stein; D. Drung; L. Fricke; H. Scherer; F. Hohls; C. Leicht; M. Götz; C. Krause; R. Behr; E. Pesel; K. Pierz; U. Siegner; F.J. Ahlers; H.W. Schumacher Validation of a quantized-current source with 0.2 ppm uncertainty, Appl. Phys. Lett., Volume 107 (2015)

[251] F. Stein; H. Scherer; T. Gerster; R. Behr; M. Götz; E. Pesel; C. Leicht; N. Ubbelohde; T. Weimann; K. Pierz; H.W. Schumacher; F. Hohls Robustness of single-electron pumps at sub-ppm current accuracy level, Metrologia, Volume 54 (2017), p. S1

[252] G. Yamahata; S.P. Giblin; M. Kataoka; T. Karasawa; A. Fujiwara Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 107, Appl. Phys. Lett., Volume 109 (2016)

[253] R. Zhao; A. Rossi; S.P. Giblin; J.D. Fletcher; F.E. Hudson; M. Möttönen; M. Kataoka; A.S. Dzurak Thermal-error regime in high-accuracy gigahertz single-electron pumping, Phys. Rev. Appl., Volume 8 (2017)

[254] S.P. Giblin; M. Kataoka; J.D. Fletcher; P. See; T.J.B.M. Janssen; J.P. Griffiths; G.A.C. Jones; I. Farrer; D.A. Ritchie Towards a quantum representation of the ampere using single electron pumps, Nat. Commun., Volume 3 (2012), p. 930 | DOI

[255] V. Kashcheyevs; B. Kaestner Universal decay cascade model for dynamic quantum dot initialization, Phys. Rev. Lett., Volume 104 (2010) | DOI

[256] J.D. Fletcher; M. Kataoka; S.P. Giblin; S. Park; H.-S. Sim; P. See; D.A. Ritchie; J.P. Griffiths; G.A.C. Jones; H.E. Beere; T.J.B.M. Janssen Stabilization of single-electron pumps by high magnetic fields, Phys. Rev. B, Volume 86 (2012) | DOI

[257] L. Fricke; M. Wulf; B. Kaestner; V. Kashcheyevs; J. Timoshenko; P. Nazarov; F. Hohls; P. Mirovsky; B. Mackrodt; R. Dolata; T. Weimann; K. Pierz; H.W. Schumacher Counting statistics for electron capture in a dynamic quantum dot, Phys. Rev. Lett., Volume 110 (2013)

[258] L. Fricke; M. Wulf; B. Kaestner; F. Hohls; P. Mirovsky; B. Mackrodt; R. Dolata; T. Weimann; K. Pierz; U. Siegner; H.W. Schumacher Self-referenced single-electron quantized current source, Phys. Rev. Lett., Volume 112 (2014)

[259] N. Johnson; J.D. Fletcher; D.A. Humphreys; P. See; J.P. Griffiths; G.A.C. Jones; I. Farrer; D.A. Ritchie; M. Pepper; T.J.B.M. Janssen; M. Kataoka Ultrafast voltage sampling using single-electron wavepackets, Appl. Phys. Lett., Volume 110 (2017) no. 10 | DOI

[260] BIPM, The BIPM key comparison database (KCDB), Calibration and Measurement Capabilities – CMCs (Appendix C), DC current database. https://kcdb.bipm.org.

[261] D. Drung; C. Krause Ultrastable low-noise current amplifiers with extended range and improved accuracy, IEEE Trans. Instrum. Meas., Volume 66 (2017), p. 1425

[262] D. Drung; C. Krause; U. Becker; H. Scherer; F. Ahlers Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy, Rev. Sci. Instrum., Volume 86 (2015)

[263] D. Drung; C. Krause; S.P. Giblin; S. Djordjevic; F. Piquemal; O. Séron; F. Rengnez; M. Götz; E. Pesel; H. Scherer Validation of the ultrastable low-noise current amplifier as travelling standard for small direct currents, Metrologia, Volume 52 (2015), p. 756

[264] W. Poirier; F. Lafont; S. Djordjevic; F. Schopfer; L. Devoille A programmable quantum current standard from the Josephson and the quantum Hall effects, J. Appl. Phys., Volume 115 (2014)

[265] I.M. Mills; P.J. Mohr; T.J. Quinn; B.N. Taylor; E.R. Williams Redefinition of the kilogram: a decision whose time has come, Metrologia, Volume 42 (2005), pp. 71-80

[266] B. Kibble A measurement of the gyromagnetic ratio of the proton by the strong field method, Atomic Masses and Fundamental Constants, vol. 5, Plenum Press, 1976, pp. 545-551

[267] D. Haddad; F. Seifert; L.S. Chao; A. Possolo; D.B. Newell; J.R. Pratt; C.J. Williams; S. Schlamminger Measurement of the Planck constant at the national institute of standards and technology from 2015 to 2017, Metrologia, Volume 54 (2017), p. 633

[268] B.M. Wood; C.A. Sanchez; R.G. Green; J.O. Liard A summary of the Planck constant determinations using the NRC Kibble balance, Metrologia, Volume 54 (2017), p. 399

[269] M. Thomas; D. Ziane; P. Pinot; R. Karcher; A. Imanaliev; F.P.D. Santos; S. Merlet; F. Piquemal; P. Espel A determination of the Planck constant using the LNE Kibble balance in air, Metrologia, Volume 54 (2017) no. 4, pp. 468-480

[270] F. Kuchar; R. Meisels; G. Weimann; W. Schlapp Microwave Hall conductivity of the two-dimensional electron gas in GaAs–AlxGa1xAs, Phys. Rev. B, Volume 33 (1986), p. 2965

[271] O. Viehweger; K.B. Efetov Frequency-dependent deformation of the Hall plateaux, J. Phys. Condens. Matter, Volume 3 (1986), p. 1675

[272] F. Delahaye Accurate AC measurements of the quantized Hall resistance from 1 Hz to 1.6 kHz, Metrologia, Volume 31 (1995) no. 5, pp. 367-373

[273] B.P. Kibble; J. Schurr A novel double-shielding technique for ac quantum Hall measurement, Metrologia, Volume 45 (2008), p. L25

[274] F. Overney; B. Jeanneret; B. Jeckelmann Effects of metallic gates on ac measurements of the quantum Hall resistance, IEEE Trans. Instrum. Meas., Volume 52 (2003), p. 574

[275] F.J. Ahlers; B. Jeannneret; F. Overney; J. Schurr; B.M. Wood Compendium for precise ac measurements of the quantized Hall resistance, Metrologia, Volume 46 (2009), p. R1

[276] F. Overney; B. Jeanneret; B. Jeckelmann; B.M. Wood; J. Schurr The quantized Hall resistance: towards a primary standard of impedance, Metrologia, Volume 43 (2006), p. 409

[277] J. Schurr; F.J. Ahlers; G. Hein; K. Pierz The ac quantum Hall effect as a primary standard of impedance, Metrologia, Volume 44 (2007), p. 15

[278] R. Haddad, George Washington University, Washington, DC, USA, 1969 (Ph.D. thesis)

[279] D.L.H. Gibbings A design for resistors of calculable a.c./d.c. resistance ratio, Proc. IEEE, Volume 110 (1963), p. 335

[280] R.D. Cutkosky Techniques for comparing four-terminal-pair admittance standards, J. Res. NBS, Volume 74C (1970), p. 63

[281] F. Overney; B. Jeanneret Impedance bridges: from Wheatstone to Josephson, Metrologia, Volume 55 (2018), p. S119

[282] F. Overney; N.E. Flowers-Jacobs; B. Jeanneret; A. Rüfenacht; A.E. Fox; J.M. Underwood; A.D. Koffman; S.P. Benz Josephson-based full digital bridge for high-accuracy impedance comparisons, Metrologia, Volume 53 (2016), p. 1045

[283] S. Bauer; R. Behr; T. Hagen; O. Kieler; J. Lee; L. Palafox; J. Schurr A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nf capacitance standard to the quantized Hall resistance, Metrologia, Volume 54 (2017), p. 152

[284] D.R. White; R. Galleano; A. Actis; H. Brixy; M.D. Groot; J. Dubbeldam; A.L. Reesink; F. Edler; H. Sakurai; R.L. Shepard; J.-C. Gallop The status of Johnson noise thermometry, Metrologia, Volume 33 (1996) no. 4, p. 325 http://stacks.iop.org/0026-1394/33/i=4/a=6

[285] J.B. Johnson Thermal agitation of electricity in conductors, Nature, Volume 119 (1927), p. 50

[286] J.B. Johnson Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928), pp. 97-109 https://link.aps.org/doi/10.1103/PhysRev.32.97 | DOI

[287] S.P. Benz; J.M. Martinis; P.D. Dresselhaus; S.W. Nam An ac Josephson source for Johnson noise thermometry, IEEE Trans. Instrum. Meas., Volume 52 (2003) no. 2, pp. 545-549 | DOI

[288] S.W. Nam; S.P. Benz; P.D. Dresselhaus; W.L. Tew; D.R. White; J.M. Martinis Johnson noise thermometry measurements using a quantized voltage noise source for calibration, IEEE Trans. Instrum. Meas., Volume 52 (2003) no. 2, pp. 550-554 | DOI

[289] S.P. Benz; A. Pollarolo; J. Qu; H. Rogalla; C. Urano; W.L. Tew; P.D. Dresselhaus; D.R. White An electronic measurement of the Boltzmann constant, Metrologia, Volume 48 (2011) no. 3, p. 142 http://stacks.iop.org/0026-1394/48/i=3/a=008

[290] D.R. White; S.P. Benz Constraints on a synthetic-noise source for Johnson noise thermometry, Metrologia, Volume 45 (2008) no. 1, p. 93 http://stacks.iop.org/0026-1394/45/i=1/a=013

[291] N.E. Flowers-Jacobs; A. Pollarolo; K.J. Coakley; A.E. Fox; H. Rogalla; W.L. Tew; S.P. Benz A Boltzmann constant determination based on Johnson noise thermometry, Metrologia, Volume 54 (2017) no. 5, p. 730 http://stacks.iop.org/0026-1394/54/i=5/a=730

[292] C. Urano; K. Yamazawa; N.-H. Kaneko Measurement of the Boltzmann constant by Johnson noise thermometry using a superconducting integrated circuit, Metrologia, Volume 54 (2017) no. 6, p. 847 http://stacks.iop.org/0026-1394/54/i=6/a=847

[293] J. Qu; S.P. Benz; K. Coakley; H. Rogalla; W.L. Tew; R. White; K. Zhou; Z. Zhou An improved electronic determination of the Boltzmann constant by Johnson noise thermometry, Metrologia, Volume 54 (2017) no. 4, p. 549 http://stacks.iop.org/0026-1394/54/i=4/a=549

[294] J.E. Mooij; Y.V. Nazarov Superconducting nanowires as quantum phase-slip junctions, Nat. Phys., Volume 2 (2006), pp. 169-172

[295] C.H. Webster; J.-C. Fenton; T.T. Hongisto; S.P. Giblin; A.B. Zorin; P.A. Warburton NbSi nanowire quantum phase-slip circuits: dc supercurrent blockade, microwave measurements, and thermal analysis, Phys. Rev. B, Volume 87 (2013) | DOI

[296] O.V. Astafiev; L.B. Ioffe; S. Kafanov; Y.A. Pashkin; K.Y. Arutyuno; D. Shahar; O. Cohen; J.S. Tsai Nature, 484 (2012), p. 355

[297] S.E. de Graaf; S.T. Skacel; T. Hönigl-Decrinis; R. Shaikhaidarov; H. Rotzinger; S. Linzen; M. Ziegler; U. Hübner; H.-G. Meyer; V. Antonov; E. Il'ichev; A.V. Ustinov; A.Y. Tzalenchuk; O.V. Astafiev Nat. Phys., 14 (2018), pp. 590-594

[298] M.R. Connolly; K.L. Chiu; S.P. Giblin; M. Kataoka; J.D. Fletcher; C. Chua; J.-P. Griffiths; G.A.C. Jones; V.I. Falko; C.G. Smith; T.J.B.M. Janssen Gigahertz quantized charge pumping in graphene quantum dots, Nat. Nanotechnol., Volume 8 (2013), p. 417

[299] Y. Cao; V. Fatemi; S. Fang; K. Watanabe; T. Taniguchi; E. Kaxiras; P. Jarillo-Herrero Unconventional superconductivity in magic-angle graphene superlattices, Nature, Volume 556 (2018), p. 43

[300] S. Oh The complete quantum Hall trio, Science, Volume 340 (2013), p. 150

[301] F.D.M. Haldane Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly, Phys. Rev. Lett., Volume 61 (1988), p. 2015

[302] M. Konig; S. Wiedmann; C. Brune; A. Roth; H. Buhmann; L.W. Molenkamp; X.-L. Qi; S.-C. Zhang Quantum spin Hall insulator state in HgTe quantum wells, Science, Volume 318 (2007), p. 766

[303] E.J. Fox; I.T. Rosen; Y. Yang; G.R. Jones; R.E. Elmquist; X. Kou; L. Pan; K.L. Wang; D. Goldhaber-Gordon Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect, Phys. Rev. B, Volume 98 (2018)

[304] C.-Z. Chang; W. Zhao; D.Y. Kim; H. Zhang; B.A. Assaf; D. Heiman; S.-C. Zhang; C. Liu; M.H.W. Chan; J.S. Moodera High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater., Volume 14 (2015), p. 473

[305] C.-Z. Chang; J. Zhang; X. Feng; J. Shen; Z. Zhang; M. Guo; K. Li; Y. Ou; P. Wei; L.-L. Wang; Z.-Q. Ji; Y. Feng; S. Ji; X. Chen; J. Jia; X. Dai; Z. Fang; S.-C. Zhang; K. He; Y. Wang; L. Lu; X.-C. Ma; Q.-K. Xue Experimental observation of the quantum anomalous Hall effect in a magnetic topological, Science, Volume 340 (2013), p. 167

[306] A.J. Bestwick; E.J. Fox; X. Kou; L. Pan; K.L. Wang; D. Goldhaber-Gordon Precise quantization of the anomalous Hall effect near zero magnetic field, Phys. Rev. Lett., Volume 114 (2015)

[307] M. Götz; K.M. Fijalkowski; E. Pesel; M. Hartl; T. Schreyeck; M. Winnerlein; S. Grauer; H. Scherer; K. Brunner; C. Gould; F.J. Ahlers; L.W. Molenkamp Precision measurement of the quantized anomalous Hall resistance at zero magnetic field, Appl. Phys. Lett., Volume 112 (2018)

[308] Joint research project SEQUOIA 17FUN04 of the European Metrology Programme for Innovation and Research (EMPIR) https://www.euramet.org/research-innovation

Cité par Sources :

Commentaires - Politique