[Mesure de la constante de Boltzmann utilisant l'élargissement Doppler avec une incertitude relative de ]
Dans cet article, nous présentons l'expérience développée au Laboratoire de physique des lasers pour la mesure optique de la constante de Boltzmann . Cette nouvelle approche ramène la détermination de à une mesure de fréquence. L'expérience consiste à mesurer le plus exactement possible le profil d'absorption Doppler d'une raie de vibration–rotation de l'ammoniac à l'équilibre thermodynamique. Ce profil reflète la distribution de Maxwell–Boltzmann des vitesses moléculaires le long du faisceau laser. Une analyse de la forme de la raie d'absorption conduit à une détermination de l'élargissement Doppler, proportionnel à , et donc à une mesure de la constante de Boltzmann. La mesure spectroscopique est réalisée à l'aide d'un laser à CO2 ultra-stable de longueur d'onde . La cellule d'absorption est placée dans un thermostat qui permet de contrôler la température autour de 273,15 K avec une incertitude de 1,4 mK. Ces mesures nous ont conduit récemment à une détermination de avec une incertitude relative de . Cela représente, pour des temps de mesure comparables, un gain d'un ordre de grandeur par rapport à notre précédente mesure publiée en Daussy et al. (2007).
In this article, we describe an experiment performed at the Laboratoire de physique des lasers and dedicated to an optical measurement of the Boltzmann constant . With the proposed innovative technique, determining comes down to an ordinary frequency measurement. The method consists in measuring as accurately as possible the Doppler absorption profile of a rovibrational line of ammonia in thermal equilibrium. This profile is related to the Maxwell–Boltzmann molecular velocity distribution along the laser beam. A fit of the absorption line shape leads to a determination of the Doppler width proportional to and thus to a determination of the Boltzmann constant. The laser source is an ultra-stable CO2 laser with a wavelength . The absorption cell is placed in a thermostat, keeping the temperature at 273.15 K within 1.4 mK. We were able to measure with a relative uncertainty as small as , which represents an improvement of an order of magnitude for an integration time comparable to our previous measurement published in 2007.
Mot clés : Constantes fondamentales, Spectroscopie laser, Forme de raie d'absorption
Khelifa Djerroud 1 ; Cyril Lemarchand 1 ; Alexandre Gauguet 1 ; Christophe Daussy 1 ; Stephan Briaudeau 2 ; Benoît Darquié 1 ; Olivier Lopez 1 ; Anne Amy-Klein 1 ; Christian Chardonnet 1 ; Christian J. Bordé 1
@article{CRPHYS_2009__10_9_883_0, author = {Khelifa Djerroud and Cyril Lemarchand and Alexandre Gauguet and Christophe Daussy and Stephan Briaudeau and Beno{\^\i}t Darqui\'e and Olivier Lopez and Anne Amy-Klein and Christian Chardonnet and Christian J. Bord\'e}, title = {Measurement of the {Boltzmann} constant by the {Doppler} broadening technique at a $ 3.8\times {10}^{-5}$ accuracy level}, journal = {Comptes Rendus. Physique}, pages = {883--893}, publisher = {Elsevier}, volume = {10}, number = {9}, year = {2009}, doi = {10.1016/j.crhy.2009.10.020}, language = {en}, }
TY - JOUR AU - Khelifa Djerroud AU - Cyril Lemarchand AU - Alexandre Gauguet AU - Christophe Daussy AU - Stephan Briaudeau AU - Benoît Darquié AU - Olivier Lopez AU - Anne Amy-Klein AU - Christian Chardonnet AU - Christian J. Bordé TI - Measurement of the Boltzmann constant by the Doppler broadening technique at a $ 3.8\times {10}^{-5}$ accuracy level JO - Comptes Rendus. Physique PY - 2009 SP - 883 EP - 893 VL - 10 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2009.10.020 LA - en ID - CRPHYS_2009__10_9_883_0 ER -
%0 Journal Article %A Khelifa Djerroud %A Cyril Lemarchand %A Alexandre Gauguet %A Christophe Daussy %A Stephan Briaudeau %A Benoît Darquié %A Olivier Lopez %A Anne Amy-Klein %A Christian Chardonnet %A Christian J. Bordé %T Measurement of the Boltzmann constant by the Doppler broadening technique at a $ 3.8\times {10}^{-5}$ accuracy level %J Comptes Rendus. Physique %D 2009 %P 883-893 %V 10 %N 9 %I Elsevier %R 10.1016/j.crhy.2009.10.020 %G en %F CRPHYS_2009__10_9_883_0
Khelifa Djerroud; Cyril Lemarchand; Alexandre Gauguet; Christophe Daussy; Stephan Briaudeau; Benoît Darquié; Olivier Lopez; Anne Amy-Klein; Christian Chardonnet; Christian J. Bordé. Measurement of the Boltzmann constant by the Doppler broadening technique at a $ 3.8\times {10}^{-5}$ accuracy level. Comptes Rendus. Physique, Volume 10 (2009) no. 9, pp. 883-893. doi : 10.1016/j.crhy.2009.10.020. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.020/
[1] et al. First direct determination of the Boltzmann constant by an optical method: towards a new definition of the Kelvin, Phys. Rev. Lett., Volume 98 (2007), p. 250801
[2] et al. Measurement of the universal gas constant R using a spherical acoustic resonator, J. Res. Natl. Bur. Stand., Volume 93 (1988), p. 85
[3] Measurement of the universal gas constant-R using a spherical acoustic resonator, Phys. Rev. Lett., Volume 60 (1988), pp. 249-252
[4] et al. CODATA recommended values of the fundamental physical constants 2006, 2007 http://physics.nist.gov/constants
[5] R. Rusby, et al., Review of methods for a redetermination of the Boltzmann constant, NPL Report DEPC TH006, 2005
[6] et al. Determination of the Boltzmann constant: status and prospects, Meas. Sci. Technol., Volume 17 (2006), p. R145-R159
[7] et al. Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K, Metrologia, Volume 43 (2006), pp. 142-162
[8] et al. Polarizability of helium and gas metrology, Phys. Rev. Lett., Volume 98 (2007), p. 254504
[9] et al. On the redefinition of the kilogram, Metrologia, Volume 36 (1999), pp. 63-64
[10] Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal, Metrologia, Volume 40 (2003), pp. 366-375
[11] et al. Redefinition of the kilogram: a decision whose time has come, Metrologia, Volume 42 (2005), pp. 71-80
[12] Base units of the SI, fundamental constants and modern quantum physics, Phil. Trans. Roy. Soc. A, Volume 363 (2005), pp. 2177-2201
[13] et al. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005), Metrologia, Volume 43 (2006) no. 3, pp. 227-246
[14] et al. CPEM 2006 round table discussion: proposed changes to the SI, Metrologia, Volume 43 (2006), pp. 583-587
[15] Some comments on the definition of mass, Metrologia, Volume 44 (2007), pp. 19-22
[16] The atomic units, the kilogram and the other proposed changes to the SI, Metrologia, Volume 44 (2007), pp. 69-72
[17] C.J. Bordé, Conference given at the Symposium to celebrate the 125th Anniversary of the meter Convention, Paris, 2000
[18] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002), pp. 435-463
[19] et al. Determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett., Volume 96 (2006) no. 3, p. 033001
[20] et al. A preliminary measurement of the fine structure constant based on atom interferometry, Phys. Scripta T, Volume 102 (2002), pp. 82-88
[21] et al. Spectroscopic determination of the Boltzmann constant: first results (Ed Hinds; Allister Ferguson; Erling Riis, eds.), Laser Spectroscopy, World Scientific Publishing Co. Pte. Ltd., 2005
[22] et al. Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant, Phys. Rev. Lett., Volume 100 (2008), p. 200801
[23] et al. High precision line profile measurements on 13C acetylene using a near infrared frequency comb spectrometer, J. Mol. Spec., Volume 249 (2008), pp. 95-99
[24] et al. On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared, C. R. Physique, Volume 10 (2009) no. 9, pp. 894-906 (this issue)
[25] On the theory of linear absorption line shapes in gases, C. R. Physique, Volume 10 (2009) no. 9, pp. 866-882 (this issue)
[26] The effect of collisions upon the Dopper width of spectral lines, Phys. Rev., Volume 89 (1953) no. 2, pp. 472-473
[27] Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev., Volume 122 (1961) no. 4, pp. 1218-1223
[28] et al. Simple binary collision model for Van Hove's , Phys. Rev. A, Volume 135 (1964) no. 1A, pp. 4-9
[29] et al. The effect of collisions on the Doppler broadening of spectral lines, Sov. Phy. Usp., Volume 9 (1967), pp. 701-716
[30] et al. CO2 laser stabilization to 0.1 Hz level using external electrooptic modulation, IEEE J. of Quant. Elec., Volume QE-33 (1997), pp. 1282-1287
[31] et al. La constante de Boltzmann mesurée par spectroscopie laser, Images de la Physique, Volume 2006 (2007), pp. 80-85
[32] et al. Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, Elsevier Science, 2008
[33] C.E. Baker, Temperature dependence of self-diffusion coefficients for gaseous ammonia, NASA Technical Note TN D-5574, 1969
[34] et al. N2, O2, Ar and He broadening in the band of NH3, Quant. Spectrosc. Radiat. Transfer, Volume 50 (1993) no. 4, pp. 337-348
[35] et al. Towards an optical measurement of the Boltzmann constant at the 10−5 level, Ann. Phys. Fr., Volume 32 (2007) no. 2–3, pp. 175-178
Cité par Sources :
Commentaires - Politique