[Sur la théorie de la forme des raies d'absorption linéaire des gaz]
Une théorie détaillée de la forme des raies d'absorption linéaire des gaz à basse pression est développée. L'objectif est de mieux cerner tous les effets susceptibles d'intervenir dans la détermination de la constante de Boltzmann à partir d'une mesure de la largeur Doppler. On démontre en particulier qu'il n'y a pas d'élargissement supplémentaire lié au temps fini de traversée du faisceau laser par les molécules. Les effets de recul et Doppler du deuxième ordre sont intégrés dans la forme de raie grâce à un traitement quantique complet. L'effet Mössbauer–Lamb–Dicke de rétrécissement des raies Doppler par les collisions est lui aussi incorporé dans la théorie avec comme cas particuliers les profils de Galatry et de Nelkin–Ghatak.
A detailed theory of the line shape in linear absorption spectroscopy of low-pressure gases is developed. The goal is to take into account all effects that come into play in the determination of Boltzmann's constant from measurements of the Doppler width. We demonstrate that there is no additional broadening from finite transit time across the laser beams. The molecular recoil and the second-order Doppler effect are included in the line shape thanks to a complete quantum treatment. The Mössbauer–Lamb–Dicke narrowing of Doppler lines by collisions is also included and the special cases of Galatry and Nelkin–Ghatak profiles are presented.
Mot clés : Forme de raie d'absorption, Spectroscopie laser, Largeur Doppler, Élargissement dû au transit, Constante de Boltzmann, Unités de base du SI
Christian J. Bordé 1, 2
@article{CRPHYS_2009__10_9_866_0, author = {Christian J. Bord\'e}, title = {On the theory of linear absorption line shapes in gases}, journal = {Comptes Rendus. Physique}, pages = {866--882}, publisher = {Elsevier}, volume = {10}, number = {9}, year = {2009}, doi = {10.1016/j.crhy.2009.10.019}, language = {en}, }
Christian J. Bordé. On the theory of linear absorption line shapes in gases. Comptes Rendus. Physique, Volume 10 (2009) no. 9, pp. 866-882. doi : 10.1016/j.crhy.2009.10.019. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.019/
[1] Measurement of the Boltzmann constant by the Doppler broadening technique at a accuracy level, C. R. Physique, Volume 10 (2009) no. 9, pp. 883-893 (this issue)
[2] On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared, C. R. Physique, Volume 10 (2009) no. 9, pp. 894-906 (this issue)
[3] Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser, C. R. Physique, Volume 10 (2009) no. 9, pp. 907-915 (this issue)
[4] Ch.J. Bordé, How far can and should we go in reducing the number of base units of the SI: A challenge in the application of modern physics, in: Conference Given at the Symposium on the Occasion of the 125th Anniversary of the Metric Convention, Paris, 2000
[5] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002) no. 5, pp. 435-463
[6] Base units of the SI, fundamental constants and modern quantum physics, Philos. Trans. Roy. Soc. A, Volume 363 (2005), pp. 2177-2201
[7] La réforme du système d'unités, La lettre de l'Académie des sciences, Volume 20 (2007), pp. 21-27
[8] Direct determination of the Boltzmann constant by an optical method, Phys. Rev. Lett., Volume 98 (2007), p. 250801
[9] C. Daussy, Ch. J. Bordé, C. Chardonnet, La constante de Boltzmann mesurée par spectroscopie laser, Images de la physique, 2006
[10] Density matrix equations and diagrams for high resolution non-linear laser spectroscopy. Application to Ramsey fringes in the optical domain (H. Walther; F. Strumia; T. Arrecchi, eds.), Advances in Laser Spectroscopy, Plenum Press, 1983, pp. 1-70
[11] Amplification de champs atomiques par émission stimulée d'atomes, Ann. Phys., Volume 20 (1995), pp. 477-485
[12] Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach, Phys. Rev., Volume 14 (1976), pp. 236-263
[13] Atomic interferometry with internal state labelling, Phys. Lett. A, Volume 140 (1989), pp. 10-12
[14] Vibration–rotation molecular constants for the ground and states of from saturated absorption spectroscopy, J. Mol. Spec., Volume 121 (1987), pp. 91-127
[15] Propagation of laser beams and of atomic systems (J. Dalibard; J.-M. Raimond; J. Zinn-Justin, eds.), Les Houches Lectures, Session LIII, 1990, Fundamental Systems in Quantum Optics, Elsevier Science Publishers, 1991, pp. 287-380
[16] Theoretical tools for atom optics and interferometry, C. R. Acad. Sci. Paris Sér. IV, Volume 2 (2001), pp. 509-530
[17] Quantum theory of atom-wave beam splitters and application to multidimensional atomic gravito-inertial sensors, Gen. Relativity Gravitation, Volume 36 (2004), pp. 475-502
[18] The quantum kinetic equation method for atoms and molecules and its application to the calculation of optical characteristics of gases, Soviet Physics JETP, Volume 35 (1972), pp. 325-330
[19] Effects of collisions on linear and non-linear spectroscopic line shapes, Phys. Rep., Volume 43 (1978), pp. 101-149 (and references therein)
[20] Simple binary collision model for Van Hove's , Phys. Rev., Volume 135 (1964), p. A4-A9
[21] Resonance absorption of nuclear gamma rays and the dynamics of atomic motions, Phys. Rev., Volume 120 (1960), pp. 1093-1102
[22] Stochastic problems in physics and astronomy, Rev. Modern Phys., Volume 15 (1943), pp. 1-89
[23] Forme de raie pour la spectroscopie d'absorption saturée tenant compte des collisions élastiques faibles, J. Phys. Lett., Volume 38 (1977), pp. L249-252
[24] Progress in understanding sub-Doppler line shapes (J.L. Hall; J.L. Carlsten, eds.), Laser Spectroscopy III, Springer-Verlag, 1977, pp. 121-134
[25] Measurement of the recoil shift of saturation resonances of at 514.5 nm: A test of accuracy for high resolution saturation spectroscopy, Phys. Rev. A, Volume 20 (1979), pp. 254-268
[26] On the theory of Brownian motion II, Rev. Modern Phys., Volume 17 (1945), pp. 323-341
[27] On Brownian motion, Boltzmann's equation, and the Fokker–Planck equation, Quaterly Appl. Math., Volume 10 (1952), p. 243
[28] Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev., Volume 122 (1961), pp. 1218-1223
[29] Validity of semiclassical small angle scattering amplitudes for the calculation of elastic collision kernels with Lennard-Jones intermolecular potentials (B. Wende, ed.), Dans Spectral Line Shapes, Walther de Gruyter, Berlin, New York, 1981, pp. 1161-1182
[30] Comparison of quantum mechanical and semi-classical scattering amplitudes for the calculation of elastic collision kernels with Lennard-Jones intermolecular potentials, J. Physique, Volume 43 (1982), pp. 1213-1226
[31] The effect of collisions on the Doppler broadening of spectral lines, Soviet Physics Uspekhi, Volume 9 (1967), pp. 701-716
Cité par Sources :
Commentaires - Politique