Comptes Rendus
Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing
[Résonateurs electromécaniques à nanotube de carbone, des détecteurs de masse/force ultrasensibles]
Comptes Rendus. Physique, Optical properties of nanotubes, Volume 11 (2010) no. 5-6, pp. 355-361.

La possibilité de contrôler le mouvement mécanique d'un objet ayant au moins une dimension de l'ordre de quelques nanomètres a récemment ouvert de nouvelles opportunités en physique fondamentale, ainsi que de développements technologiques. Les nanotubes de carbone sont l'un des nanomatériaux les plus prometteurs et les plus adaptés pour répondre à une telle problématique expérimentale. En effet ils sont uni dimensionnelles avec un diamètre de l'orde du nanomètre, ils combinent des propriétés mécaniques et électroniques exceptionnelles et ils sont faciles à manipuler et adresser. Nous présentons ici les principes de base de la fabrication, de l'actionnement électromécanique et de la détection du mouvement d'un nanotube et nous présentons les premiers résultats expérimentaux obtenus ayant permis (i) de comprendre l'influence du couplage électromécanique sur les propriétés mécaniques et, (ii) de tester les capacités des nanotubes de carbone comme détecteur de masse.

Controlling the mechanical motion of objects which have at least one dimension in the range of few nanometers has recently opened new avenues for fundamental science and technological developments. Carbon nanotubes are one of the most promising and suitable nano-objects for such an experimental issue. Indeed, they are an uni-dimensional system with a diameter around 1 nm, they combine exceptional mechanical and electronic properties and they are easy to manipulate and to address. We review here the basic principles of fabrication, of electromechanical actuation and detection of the nanotube motion and we present the first experimental results obtained which have allowed us to (i) understand the effect of the electromechanical on the mechanical properties; and (ii) to test the carbon nanotube capabilities for mass sensing.

Publié le :
DOI : 10.1016/j.crhy.2010.06.006
Keywords: Carbon nanotube, Nanoelectromechanical systems, Mixing technique, Nanofabrication, Ultrasensitive mass sensing, Coulomb blockade
Mots-clés : Nanotube de carbone, Nano systèmes électromécaniques, Technique de mixage, Nanofabrication, Détection de masse ultrasensible, Blocage de coulomb

Benjamin Lassagne 1 ; Adrian Bachtold 2

1 Université de Toulouse, Laboratoire de Physique et de Chimie des Nano-Objets (LPCNO CNRS-INSA-UPS), UMR 5215, 31077 Toulouse cedex 4, France
2 Centre d'Investigacio en Nanociencia i Nanotechnologia (CIN2), Barcelona, Spain
@article{CRPHYS_2010__11_5-6_355_0,
     author = {Benjamin Lassagne and Adrian Bachtold},
     title = {Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing},
     journal = {Comptes Rendus. Physique},
     pages = {355--361},
     publisher = {Elsevier},
     volume = {11},
     number = {5-6},
     year = {2010},
     doi = {10.1016/j.crhy.2010.06.006},
     language = {en},
}
TY  - JOUR
AU  - Benjamin Lassagne
AU  - Adrian Bachtold
TI  - Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 355
EP  - 361
VL  - 11
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.06.006
LA  - en
ID  - CRPHYS_2010__11_5-6_355_0
ER  - 
%0 Journal Article
%A Benjamin Lassagne
%A Adrian Bachtold
%T Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing
%J Comptes Rendus. Physique
%D 2010
%P 355-361
%V 11
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2010.06.006
%G en
%F CRPHYS_2010__11_5-6_355_0
Benjamin Lassagne; Adrian Bachtold. Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing. Comptes Rendus. Physique, Optical properties of nanotubes, Volume 11 (2010) no. 5-6, pp. 355-361. doi : 10.1016/j.crhy.2010.06.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.006/

[1] Y.T. Yang; C. Callegari; X.L. Feng; K.L. Ekinci; M.L. Roukes Nanolett., 6 (2006), p. 583

[2] H.J. Mamina; D. Rugar Appl. Phys. Lett., 79 (2001), p. 3358

[3] D. Rugar; R. Budakian; H.J. Mamin; B.W. Chui Nature, 430 (2004), p. 329

[4] M. Li; H.X. Tang; M.L. Roukes Nat. Nanotechnol., 2 (2007), pp. 114-120

[5] C.T.C. Nguyen IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 1486-1503

[6] C.T.C. Nguyen, A.-C. Wong, D. Hao, in: Solid-State Circuits Conf., 1999, pp. 78–79.

[7] R.K. Knobel; A.N. Cleland Nature, 424 (2003), p. 291

[8] M.D. LaHaye; O. Buu; B. Camarota; K.C. Schwab Science, 304 (2004), p. 74

[9] A. Naik; O. Buu; M.D. LaHaye; A.D. Armour; A.A. Clerk; M.P. Blencowe; K.C. Schwab Nature, 443 (2006), p. 193

[10] P. Poncharal; Z.L. Wang; D. Ugarte; W.A. Heer Science, 283 (1999), p. 1513

[11] V. Sazonova; Y. Yaish; H. Üstünel; D. Roundy; T.A. Arias; P.L. McEuen Nature, 431 (2004), p. 284

[12] B. Witkamp; M. Poot; H.S.J. van der Zant Nanolett., 6 (2006), p. 2904

[13] D. Garcia-Sanchez; A. San Paulo; M.J. Esplandiu; F. Perez-Murano; L. Forró; A. Aguasca; A. Bachtold Phys. Rev. Lett., 99 (2007), p. 085501

[14] K. Jensen; K. Kim; A. Zettl Nature Nanotech., 3 (2008), p. 533

[15] B. Lassagne; D. Garcia-Sanchez; A. Aguasca; A. Bachtold Nanolett., 8 (2008), p. 3735

[16] H.-Y. Chiu; P. Hung; H.W.C. Postma; M. Bockrath Nanolett., 8 (2008), p. 4342

[17] B. Lassagne; Y. Tarakanov; J. Kinaret; D. Garcia-Sanchez; A. Bachtold Science, 325 (2009), p. 1107

[18] G.A. Steele; A.K. Hüttel; B. Witkamp; M. Poot; H.B. Meerwaldt; L.P. Kouwenhoven; H.S.J. van der Zant Science, 325 (2009), p. 1103

[19] J.-C. Charlier; X. Blase; S. Roche Rev. Mod. Phys., 79 (2007), p. 677

[20] M.P. Anantram; F. Leonard Rep. Prog. Phys., 69 (2006), pp. 507-561

[21] J. Kong; H.T. Soh; A.M. Cassell; C.F. Quate; H. Dai Nature, 395 (1998), p. 878

[22] A. Clerk; S. Bennett New J. Phys., 7 (2005), p. 238

[23] A.D. Armour; M.P. Blencowe; Y. Zhang Phys. Rev. B, 69 (2004), p. 125313

[24] F. Pistolesi; S. Labarthe Phys. Rev. B, 76 (2007), p. 165317

[25] L.D. Landau; E.M. Lifshitz Mechanics, Pergamon Press, 1960

[26] A.K. Naik; M.S. Hanay; W.K. Hiebert; X.L. Feng; M.L. Roukes Nat. Nano., 4 (2009), pp. 445-450

[27] J.P. Cleveland; S. Manne; D. Bocek; P.K. Hansma Rev. Sci. Instrum., 64 (1993), p. 403

[28] Y. Zhang; F.W. Nathan; R.J. Chen; H. Dai Chem. Phys. Lett., 331 (2000), p. 35

[29] V. Peano; M. Thorwart Phys. Rev. B, 70 (2004), p. 235401

[30] S. Zippilli; G. Morigi; A. Bachtold Phys. Rev. Lett., 102 (2009), p. 096804

[31] J.S. Aldridge; A.N. Cleland Phys. Rev. Lett., 94 (2005), p. 156403

[32] A. Erbe et al. Appl. Phys. Lett., 77 (2000), p. 3102

[33] R.L. Badzey; P. Mohanty Nature, 437 (2005), p. 995

[34] S.B. Shim; M. Imboden; P. Mohanty Science, 316 (2007), p. 95

[35] B. Lassagne, M. Respaud, in preparation.

  • Toshiaki Natsuki; Jun Natsuki Constitutive Modeling of Mechanical Behaviors of Carbon-Based CNTs and GSs, and Their Sensing Applications as Nanomechanical Resonators: A Review, Nanomaterials, Volume 13 (2023) no. 12, p. 1834 | DOI:10.3390/nano13121834
  • Elham Abohamzeh; Mohsen Sheikholeslami; Fatemeh Salehi Carbon Nanotubes for Mechanical Applications, Handbook of Carbon Nanotubes (2022), p. 1335 | DOI:10.1007/978-3-030-91346-5_27
  • Eduardo Henrique Gonçalves; Pedro Ribeiro Modes of Vibration of Single- and Double-Walled CNTs with an Attached Mass by a Non-local Shell Model, Journal of Vibration Engineering Technologies, Volume 10 (2022) no. 1, p. 375 | DOI:10.1007/s42417-021-00381-z
  • Elham Abohamzeh; Mohsen Sheikholeslami; Fatemeh Salehi Carbon Nanotubes for Mechanical Applications, Handbook of Carbon Nanotubes (2021), p. 1 | DOI:10.1007/978-3-319-70614-6_27-1
  • Nataliya A. Sakharova; André F. G. Pereira; Jorge M. Antunes; José V. Fernandes Mechanical Characterization of Multiwalled Carbon Nanotubes: Numerical Simulation Study, Materials, Volume 13 (2020) no. 19, p. 4283 | DOI:10.3390/ma13194283
  • Shivdayal Kumar; Anand Bhushan Static and dynamic characteristics of electrostatically actuated graphene bridge resonator, Materials Today: Proceedings, Volume 27 (2020), p. 2204 | DOI:10.1016/j.matpr.2019.09.097
  • Christian Wagner; Thomas Blaudeck; Peter Meszmer; Simon Böttger; Florian Fuchs; Sascha Hermann; Jörg Schuster; Bernhard Wunderle; Stefan Eberhard Schulz Carbon Nanotubes for Mechanical Sensor Applications, physica status solidi (a), Volume 216 (2019) no. 19 | DOI:10.1002/pssa.201900584
  • Antonio Pantano Effects of mechanical deformation on electronic transport through multiwall carbon nanotubes, International Journal of Solids and Structures, Volume 122-123 (2017), p. 33 | DOI:10.1016/j.ijsolstr.2017.05.041
  • M. Habibi; S. Darbari; S. Rajabali; V. Ahmadi Fabrication of a graphene-based pressure sensor by utilising field emission behavior of carbon nanotubes, Carbon, Volume 96 (2016), p. 259 | DOI:10.1016/j.carbon.2015.09.059
  • A. Bhushan; M.M. Inamdar; D.N. Pawaskar Simultaneous planar free and forced vibrations analysis of an electrostatically actuated beam oscillator, International Journal of Mechanical Sciences, Volume 82 (2014), p. 90 | DOI:10.1016/j.ijmecsci.2014.03.003
  • Magdalena Kurcz Zastosowania nanorurek węglowych, Nanorurki węglowe. Otrzymywanie, charakterystyka, zastosowania (2014) | DOI:10.31338/uw.9788323514541.pp.181-258
  • Dumitru I. Caruntu; Le Luo Frequency response of primary resonance of electrostatically actuated CNT cantilevers, Nonlinear Dynamics, Volume 78 (2014) no. 3, p. 1827 | DOI:10.1007/s11071-014-1537-4
  • František Karlický; Bruno Lepetit; Didier Lemoine Quantum modelling of hydrogen chemisorption on graphene and graphite, The Journal of Chemical Physics, Volume 140 (2014) no. 12 | DOI:10.1063/1.4867995
  • Antonio Pantano; Dario Campanella; Nicola Montinaro; Donatella Cerniglia Electronic properties of carbon nanotubes under torsion, Applied Physics A, Volume 110 (2013) no. 1, p. 77 | DOI:10.1007/s00339-012-7415-3
  • Antonio Pantano; Giuseppe Muratore; Nicola Montinaro Electrical conductance of carbon nanotubes with misaligned ends, Journal of Nanoparticle Research, Volume 15 (2013) no. 9 | DOI:10.1007/s11051-013-1885-x
  • Florent Seichepine; Sven Salomon; Maéva Collet; Samuel Guillon; Liviu Nicu; Guilhem Larrieu; Emmanuel Flahaut; Christophe Vieu A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets, Nanotechnology, Volume 23 (2012) no. 9, p. 095303 | DOI:10.1088/0957-4484/23/9/095303
  • A. Bhushan; M. M. Inamdar; D. N. Pawaskar Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application, Microsystem Technologies, Volume 17 (2011) no. 12, p. 1779 | DOI:10.1007/s00542-011-1367-y
  • Bruno Lepetit; Bret Jackson Sticking of Hydrogen on Supported and Suspended Graphene at Low Temperature, Physical Review Letters, Volume 107 (2011) no. 23 | DOI:10.1103/physrevlett.107.236102

Cité par 18 documents. Sources : Crossref

Commentaires - Politique