[Résonateurs electromécaniques à nanotube de carbone, des détecteurs de masse/force ultrasensibles]
La possibilité de contrôler le mouvement mécanique d'un objet ayant au moins une dimension de l'ordre de quelques nanomètres a récemment ouvert de nouvelles opportunités en physique fondamentale, ainsi que de développements technologiques. Les nanotubes de carbone sont l'un des nanomatériaux les plus prometteurs et les plus adaptés pour répondre à une telle problématique expérimentale. En effet ils sont uni dimensionnelles avec un diamètre de l'orde du nanomètre, ils combinent des propriétés mécaniques et électroniques exceptionnelles et ils sont faciles à manipuler et adresser. Nous présentons ici les principes de base de la fabrication, de l'actionnement électromécanique et de la détection du mouvement d'un nanotube et nous présentons les premiers résultats expérimentaux obtenus ayant permis (i) de comprendre l'influence du couplage électromécanique sur les propriétés mécaniques et, (ii) de tester les capacités des nanotubes de carbone comme détecteur de masse.
Controlling the mechanical motion of objects which have at least one dimension in the range of few nanometers has recently opened new avenues for fundamental science and technological developments. Carbon nanotubes are one of the most promising and suitable nano-objects for such an experimental issue. Indeed, they are an uni-dimensional system with a diameter around 1 nm, they combine exceptional mechanical and electronic properties and they are easy to manipulate and to address. We review here the basic principles of fabrication, of electromechanical actuation and detection of the nanotube motion and we present the first experimental results obtained which have allowed us to (i) understand the effect of the electromechanical on the mechanical properties; and (ii) to test the carbon nanotube capabilities for mass sensing.
Mots-clés : Nanotube de carbone, Nano systèmes électromécaniques, Technique de mixage, Nanofabrication, Détection de masse ultrasensible, Blocage de coulomb
Benjamin Lassagne 1 ; Adrian Bachtold 2
@article{CRPHYS_2010__11_5-6_355_0, author = {Benjamin Lassagne and Adrian Bachtold}, title = {Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing}, journal = {Comptes Rendus. Physique}, pages = {355--361}, publisher = {Elsevier}, volume = {11}, number = {5-6}, year = {2010}, doi = {10.1016/j.crhy.2010.06.006}, language = {en}, }
TY - JOUR AU - Benjamin Lassagne AU - Adrian Bachtold TI - Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing JO - Comptes Rendus. Physique PY - 2010 SP - 355 EP - 361 VL - 11 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2010.06.006 LA - en ID - CRPHYS_2010__11_5-6_355_0 ER -
Benjamin Lassagne; Adrian Bachtold. Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing. Comptes Rendus. Physique, Optical properties of nanotubes, Volume 11 (2010) no. 5-6, pp. 355-361. doi : 10.1016/j.crhy.2010.06.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.006/
[1] Nanolett., 6 (2006), p. 583
[2] Appl. Phys. Lett., 79 (2001), p. 3358
[3] Nature, 430 (2004), p. 329
[4] Nat. Nanotechnol., 2 (2007), pp. 114-120
[5] IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 1486-1503
[6] C.T.C. Nguyen, A.-C. Wong, D. Hao, in: Solid-State Circuits Conf., 1999, pp. 78–79.
[7] Nature, 424 (2003), p. 291
[8] Science, 304 (2004), p. 74
[9] Nature, 443 (2006), p. 193
[10] Science, 283 (1999), p. 1513
[11] Nature, 431 (2004), p. 284
[12] Nanolett., 6 (2006), p. 2904
[13] Phys. Rev. Lett., 99 (2007), p. 085501
[14] Nature Nanotech., 3 (2008), p. 533
[15] Nanolett., 8 (2008), p. 3735
[16] Nanolett., 8 (2008), p. 4342
[17] Science, 325 (2009), p. 1107
[18] Science, 325 (2009), p. 1103
[19] Rev. Mod. Phys., 79 (2007), p. 677
[20] Rep. Prog. Phys., 69 (2006), pp. 507-561
[21] Nature, 395 (1998), p. 878
[22] New J. Phys., 7 (2005), p. 238
[23] Phys. Rev. B, 69 (2004), p. 125313
[24] Phys. Rev. B, 76 (2007), p. 165317
[25] Mechanics, Pergamon Press, 1960
[26] Nat. Nano., 4 (2009), pp. 445-450
[27] Rev. Sci. Instrum., 64 (1993), p. 403
[28] Chem. Phys. Lett., 331 (2000), p. 35
[29] Phys. Rev. B, 70 (2004), p. 235401
[30] Phys. Rev. Lett., 102 (2009), p. 096804
[31] Phys. Rev. Lett., 94 (2005), p. 156403
[32] et al. Appl. Phys. Lett., 77 (2000), p. 3102
[33] Nature, 437 (2005), p. 995
[34] Science, 316 (2007), p. 95
[35] B. Lassagne, M. Respaud, in preparation.
- Constitutive Modeling of Mechanical Behaviors of Carbon-Based CNTs and GSs, and Their Sensing Applications as Nanomechanical Resonators: A Review, Nanomaterials, Volume 13 (2023) no. 12, p. 1834 | DOI:10.3390/nano13121834
- Carbon Nanotubes for Mechanical Applications, Handbook of Carbon Nanotubes (2022), p. 1335 | DOI:10.1007/978-3-030-91346-5_27
- Modes of Vibration of Single- and Double-Walled CNTs with an Attached Mass by a Non-local Shell Model, Journal of Vibration Engineering Technologies, Volume 10 (2022) no. 1, p. 375 | DOI:10.1007/s42417-021-00381-z
- Carbon Nanotubes for Mechanical Applications, Handbook of Carbon Nanotubes (2021), p. 1 | DOI:10.1007/978-3-319-70614-6_27-1
- Mechanical Characterization of Multiwalled Carbon Nanotubes: Numerical Simulation Study, Materials, Volume 13 (2020) no. 19, p. 4283 | DOI:10.3390/ma13194283
- Static and dynamic characteristics of electrostatically actuated graphene bridge resonator, Materials Today: Proceedings, Volume 27 (2020), p. 2204 | DOI:10.1016/j.matpr.2019.09.097
- Carbon Nanotubes for Mechanical Sensor Applications, physica status solidi (a), Volume 216 (2019) no. 19 | DOI:10.1002/pssa.201900584
- Effects of mechanical deformation on electronic transport through multiwall carbon nanotubes, International Journal of Solids and Structures, Volume 122-123 (2017), p. 33 | DOI:10.1016/j.ijsolstr.2017.05.041
- Fabrication of a graphene-based pressure sensor by utilising field emission behavior of carbon nanotubes, Carbon, Volume 96 (2016), p. 259 | DOI:10.1016/j.carbon.2015.09.059
- Simultaneous planar free and forced vibrations analysis of an electrostatically actuated beam oscillator, International Journal of Mechanical Sciences, Volume 82 (2014), p. 90 | DOI:10.1016/j.ijmecsci.2014.03.003
- Zastosowania nanorurek węglowych, Nanorurki węglowe. Otrzymywanie, charakterystyka, zastosowania (2014) | DOI:10.31338/uw.9788323514541.pp.181-258
- Frequency response of primary resonance of electrostatically actuated CNT cantilevers, Nonlinear Dynamics, Volume 78 (2014) no. 3, p. 1827 | DOI:10.1007/s11071-014-1537-4
- Quantum modelling of hydrogen chemisorption on graphene and graphite, The Journal of Chemical Physics, Volume 140 (2014) no. 12 | DOI:10.1063/1.4867995
- Electronic properties of carbon nanotubes under torsion, Applied Physics A, Volume 110 (2013) no. 1, p. 77 | DOI:10.1007/s00339-012-7415-3
- Electrical conductance of carbon nanotubes with misaligned ends, Journal of Nanoparticle Research, Volume 15 (2013) no. 9 | DOI:10.1007/s11051-013-1885-x
- A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets, Nanotechnology, Volume 23 (2012) no. 9, p. 095303 | DOI:10.1088/0957-4484/23/9/095303
- Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application, Microsystem Technologies, Volume 17 (2011) no. 12, p. 1779 | DOI:10.1007/s00542-011-1367-y
- Sticking of Hydrogen on Supported and Suspended Graphene at Low Temperature, Physical Review Letters, Volume 107 (2011) no. 23 | DOI:10.1103/physrevlett.107.236102
Cité par 18 documents. Sources : Crossref
Commentaires - Politique