We present recent applications of the atomistic diffusion model and of the kinetic Monte Carlo (AKMC) algorithm to alloys of industrial interest or to model systems. These applications include study of homogeneous and heterogeneous precipitation during thermal ageing as well as of phase transformation under irradiation. The AKMC simulations are also used to test the main assumptions and limitations of more simple models and classical theories used in the industry, e.g. the classical nucleation theory.
Nous présentons des applications récentes d'un modèle de diffusion atomique et de simulations Monte Carlo cinétiques à des alliages d'intérêt industriel ainsi qu'à des systèmes modèles. Ces applications se concentrent sur l'étude de la précipitation homogène et hétérogène au cours de vieillissements thermiques, ainsi que sur les transformations de phase sous irradiation. Les simulations de Monte Carlo cinétique sont également employées pour valider les hypothèses et tester les limites des descriptions classiques des transformations de phase, comme la théorie classique de germination.
Mot clés : Précipitation, Germination, Monte Carlo cinétique
Emmanuel Clouet 1; Frédéric Soisson 1
@article{CRPHYS_2010__11_3-4_226_0, author = {Emmanuel Clouet and Fr\'ed\'eric Soisson}, title = {Atomic simulations of diffusional phase transformations}, journal = {Comptes Rendus. Physique}, pages = {226--235}, publisher = {Elsevier}, volume = {11}, number = {3-4}, year = {2010}, doi = {10.1016/j.crhy.2010.07.004}, language = {en}, }
Emmanuel Clouet; Frédéric Soisson. Atomic simulations of diffusional phase transformations. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 226-235. doi : 10.1016/j.crhy.2010.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.004/
[1] The theories of unmixing kinetics of solid solutions, Solid State Phase Transformations in Metals and Alloys, Les Éditions de Physique, Orsay, 1978, pp. 337-406
[2] Homogeneous second-phase precipitation (Gernot Kostorz, ed.), Phase Transformations in Materials, 2005, pp. 309-407
[3] Spinodal decomposition (Gernot Kostorz, ed.), Phase Transformations in Materials, les Éditions de Physique, Orsay, 2005, pp. 409-480
[4] Monte Carlo Methods in Statistical Physics, Oxford University Press, 1999
[5] A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 2005
[6] Atom Movements: Diffusion and Mass Transport in Solids, Les Éditions de Physique, Orsay, 1991
[7] Monte Carlo studies of vacancy migration in binary ordered alloys: I, Proc. Phys. Soc. London, Volume 89 (1966), pp. 735-746
[8] A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys., Volume 17 (1975), pp. 10-18
[9] Kinetic Monte Carlo method to model diffusion controlled phase transformations in the solid state (Sidney Yip, ed.), Handbook of Materials Modeling, Springer, The Netherlands, 2005, pp. 2223-2248
[10] Introducing chemistry in atomistic kinetic Monte Carlo simulations of Fe alloys under irradiation, Phys. Status Solidi B, Volume 247 (2010), pp. 9-22
[11] D. Gendt, Cinétiques de précipitation du carbure de niobium dans la ferrite, PhD thesis, Université de Paris XI, Orsay, 2001.
[12] Kinetic Monte Carlo simulations of radiation induced segregation and precipitation, J. Nucl. Mater., Volume 349 (2006), pp. 235-250
[13] Cu-precipitation kinetics in alpha-Fe from atomistic simulations: Vacancy-trapping effects and Cu-cluster mobility, Phys. Rev. B, Volume 76 (2007), p. 214102
[14] Copper precipitation in dilute iron–copper alloys: A Monte Carlo simulation, Ann. Phys. (Paris), Volume 20 ( June 1995 ) no. 3, pp. 13-20
[15] Monte Carlo simulations of copper precipitation in dilute iron–copper alloys during thermal ageing and under electron irradiation, Acta Mater., Volume 44 (1996), pp. 3789-3800
[16] Atomistic computer simulation of the formation of Cu-precipitates in steels, Comput. Mater. Sci., Volume 24 (2002) no. 1–2, pp. 42-53
[17] An atomistic Monte Carlo simulation of precipitation in a binary system, Z. Metallkd., Volume 94 ( August 2003 ) no. 8, pp. 858-863
[18] Solute interaction with point defects in [alpha] Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach, J. Nucl. Mater., Volume 351 (2006) no. 1–3, pp. 88-99
[19] Precipitation of the FeCu system: A critical review of atomic kinetic Monte Carlo simulations, J. Nucl. Mater., Volume 373 (2008) no. 1–3, pp. 387-401
[20] Monte-Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics, Phys. Rev. B, Volume 62 (2000), pp. 203-214
[21] Kinetics pathway from embedded-atom-method potential: Influence of the activation barriers, Phys. Rev. B, Volume 65 (2002), p. 0914103
[22] Competing mechanisms for precipitate coarsening in phase separation with vacancy dynamics, Phys. Rev. B, Volume 55 (1997), p. R6101-R6104
[23] Effects of atomic mobilities on phase separation kinetics: a Monte-Carlo study, Acta Mater., Volume 48 (2000), pp. 2675-2688
[24] Vacancy-assisted phase separation with asymmetric atomic mobility: Coarsening rates, precipitate composition, and morphology, Phys. Rev. B, Volume 63 (2001), p. 184114
[25] By which mechanism does coarsening in phase-separating alloys proceed?, Europhys. Lett., Volume 61 (2003), p. 261
[26] Using kinetic Monte Carlo simulations to study phase separation in alloys, Phase Transitions, Volume 77 (2004), pp. 433-456
[27] Interface sharpening and broadening during annealing of Cu/Ni multilayers: A kinetic Monte Carlo study, Phys. Rev. B, Volume 73 (2006), p. 085403
[28] Two-band modeling of α-prime phase formation in Fe–Cr, Phys. Rev. B, Volume 72 (2005), p. 214119
[29] Early stages of alpha–alpha′ phase separation in Fe–Cr alloys: An atomistic study, Phys. Rev. B, Volume 79 (2009), p. 104207
[30] Short- and long-range orders in Fe–Cr: A Monte Carlo study, J. Appl. Phys., Volume 106 (2009), p. 104906
[31] Magnetic cluster expansion model for bcc–fcc transitions in Fe and Fe–Cr alloys, Phys. Rev. B, Volume 81 (2010), p. 184202
[32] A Monte-Carlo study of B2 ordering and precipitation via vacancy mechanism in b.c.c. lattices, Acta Mater., Volume 44 (1996), pp. 4739-4748
[33] Slow coarsening of B2-ordered domains at low temperatures: A kinetic Monte Carlo study, Phys. Rev. B, Volume 62 (2000), pp. 3142-3152
[34] Computer simulations of diffusional phase transformations: Monte Carlo algorithm and application to precipitation of ordered phases, Acta Mater., Volume 46 (1998), pp. 4243-4255
[35] Nucleation of Al3Zr and Al3Sc in aluminium alloys: from kinetic Monte Carlo simulations to classical theory, Phys. Rev. B, Volume 69 (2004), p. 064109
[36] Ordering kinetics in an fcc A3B binary alloy model: Monte Carlo studies, Phys. Rev. B, Volume 67 (2003), p. 134201
[37] Ordering and phase separation in Ni–Cr–Al: Monte Carlo simulations vs three-dimensional atom probe, Acta Mater., Volume 47 (1999), pp. 1889-1899
[38] The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy, Nat. Mater., Volume 6 (2007), pp. 210-216
[39] Complex precipitation pathways in multicomponent alloys, Nat. Mater., Volume 5 (2006), pp. 482-488
[40] Monte Carlo simulation of NbC precipitation kinetics in α-Fe, Defect Diff. Forum, Volume 194–199 (2001), pp. 1779-1786
[41] Classification of the role of microalloying elements in phase decomposition of Al based alloys, Acta Mater., Volume 48 (2000), pp. 1797-1806
[42] Kinetic Monte Carlo simulations of clustering in an Al–Zn–Mg–Cu alloy (7050), Acta Mater., Volume 53 (2005), pp. 907-917
[43] Combined atomic-scale modelling and experimental studies of nucleation in the solid state, Philos. Trans. R. Soc. London A, Volume 361 (2003), pp. 463-477
[44] Kinetics of heterogeneous grain boundary precipitation of NbC in α-iron: A Monte Carlo study, Acta Mater., Volume 56 (2008), pp. 5653-5667
[45] Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron, Acta Mater., Volume 56 (2008), pp. 5535-5543
[46] Solute and dislocation junction interactions, Acta Mater., Volume 56 (2008), pp. 2937-2947
[47] Atomistic modelling of diffusional phase transformations with elastic strain, J. Phys.: Condens. Matter, Volume 16 (2004), p. S2679
[48] On-the-fly evaluation of diffusional parameters during a Monte Carlo simulation of diffusion in alloys: a challenge, Defect Diff. Forum, Volume 203–205 (2002), pp. 81-112
[49] Kinetic activation–relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm, Phys. Rev. B, Volume 78 (2008), p. 153202
[50] Modelling the carbon Snoek peak in ferrite: Coupling molecular dynamics and kinetic Monte-Carlo simulations, Comp. Mater. Sci., Volume 43 (2008), pp. 286-292
[51] Atomic Transport in Solids, Cambridge University Press, October 2003
[52] Driven alloys, Solid State Phys., Volume 50 (1997), pp. 189-331
[53] Compositional patterning in systems driven by competing dynamics of different length scale, Phys. Rev. Lett., Volume 84 ( March 2000 ) no. 13, p. 2885
[54] Compositional patterning in immiscible alloys driven by irradiation, Phys. Rev. B, Volume 63 ( March 2001 ) no. 13, p. 134111
[55] A.J. Ardell, Radiation-induced solute segregation in alloys, in: Materials Issues for Generation IV Systems, 2008, pp. 285–310.
[56] Monte Carlo modelling of Cu atom diffusion in α-Fe via the vacancy mechanism, Philos. Mag. Lett., Volume 86 (2006) no. 5, p. 321
[57] Atomistic simulations of copper precipitation and radiation induced segregation in α-iron, Solid State Phenom., Volume 139 (2008), p. 107
[58] Kinetic Monte Carlo study of radiation-induced segregation in model metallic alloys, Philos. Mag., Volume 87 (2007), p. 3945
[59] Kinetic Monte Carlo modeling of cascade aging and damage accumulation in Fe–Cu alloys, J. Nucl. Mater., Volume 361 (2007), pp. 127-140
[60] Microstructural evolution under high flux irradiation of dilute Fe-CuNiMnSi alloys studied by an atomic kinetic Monte Carlo model accounting for both vacancies and self interstitials, J. Nucl. Mater., Volume 382 (2008), pp. 154-159
[61] Homogeneous phase separation in binary alloys under ion irradiation conditions: Role of interstitial atoms, Phys. Rev. B, Volume 75 (2007), p. 144107
[62] Solid solutions under irradiation. I. A model for radiation-induced metastability, Phys. Rev. B, Volume 23 ( April 1981 ) no. 7, p. 3322
[63] Solid solutions under irradiation. 2. Radiation-induced precipitation in AlZn undersaturated solid solutions, Phys. Rev. B, Volume 23 (1981) no. 7, pp. 3333-3348
[64] Modeling of nucleation processes (D.U. Furrer; S.L. Semiatin, eds.), Fundamentals of Modeling for Metals Processing, ASM Handbook, vol. 22A, ASM, 2009, pp. 203-219
[65] Classical nucleation theory in ordering alloys precipitating with L12 structure, Phys. Rev. B, Volume 75 (2007), p. 132102
[66] Precipitation kinetics of Al3Zr and Al3Sc in aluminium alloys modeled with cluster dynamics, Acta Mater., Volume 53 (2005), pp. 2313-2325
[67] Nanoscale structural evolution of Al3Sc precipitates in Al–Sc alloys, Acta Mater., Volume 49 (2001), pp. 1909-1919
[68] Precipitation of Al3Sc in binary Al–Sc alloys, Mater. Sci. Eng. A, Volume 318 (2001), pp. 144-154
[69] Influence of cluster mobility on Cu precipitation in α-Fe: A cluster dynamics modeling, Acta Mater., Volume 58 (2010), pp. 3400-3405
[70] Modeling homogeneous precipitation with an event-based Monte Carlo method: Application to the case of Fe–Cu, Acta Mater., Volume 58 (2010), pp. 3295-3302
[71] Modelling precipitation in binary alloys by cluster dynamics, Acta Mater., Volume 57 (2009), pp. 1086-1094
Cited by Sources:
Comments - Policy