A brief overview of the current state-of-the-art in choosing the interfacial compositions (or boundary conditions), for mesoscale, diffusion-controlled phase transformations, as practiced by the numerical metallurgy community, is presented. The physical processes that are currently thought to influence these values and the assumptions underlying the most common choices for the interfacial compositions are outlined. The need for a properly coupled, multiscale approach, that uses mesoscale simulation techniques to describe diffusion in the bulk phases, and atomistic simulation tools to describe the processes occurring within the interface (that influence the boundary conditions for the diffusion problem), is highlighted.
On présente dans cet article une rapide revue de l'état de l'art sur la question du choix des conditions à l'interface (ou conditions aux limites) pour des transformations de phases contrôlées par la diffusion, modélisées à l'échelle mésoscopique. On décline les procédés physiques qui sont actuellement admis comme contrôlant ces compositions d'interface, et les hypothèses sous jacentes aux différents choix communément sélectionnés. On insiste sur la nécessité de coupler correctement, dans une approche multiéchelle, impliquant en particulier l'échelle mésoscopique pour la description des champs de diffusion, et l'échelle atomistique pour décrire les procédés spécifiques de l'interface.
Mot clés : Compositions interfaciales, Trainage de solute, Mobilite des interfaces, Croissance contrôlée par la diffusion
Christopher R. Hutchinson 1; Hatem S. Zurob 2
@article{CRPHYS_2010__11_3-4_257_0, author = {Christopher R. Hutchinson and Hatem S. Zurob}, title = {Mesoscale simulations of the kinetics of solid{\textendash}solid phase transformations: {Selecting} the relevant interfacial compositions for shape-preserved growth}, journal = {Comptes Rendus. Physique}, pages = {257--264}, publisher = {Elsevier}, volume = {11}, number = {3-4}, year = {2010}, doi = {10.1016/j.crhy.2010.07.006}, language = {en}, }
TY - JOUR AU - Christopher R. Hutchinson AU - Hatem S. Zurob TI - Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth JO - Comptes Rendus. Physique PY - 2010 SP - 257 EP - 264 VL - 11 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2010.07.006 LA - en ID - CRPHYS_2010__11_3-4_257_0 ER -
%0 Journal Article %A Christopher R. Hutchinson %A Hatem S. Zurob %T Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth %J Comptes Rendus. Physique %D 2010 %P 257-264 %V 11 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2010.07.006 %G en %F CRPHYS_2010__11_3-4_257_0
Christopher R. Hutchinson; Hatem S. Zurob. Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 257-264. doi : 10.1016/j.crhy.2010.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.006/
[1] On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates, Acta Mater., Volume 56 (2008), p. 6109
[2] The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation, Acta Mater., Volume 57 (2009), p. 6075
[3] Atomic simulations of diffusional phase transformations, C. R. Physique, Volume 11 (2010), pp. 226-235 ( in this issue )
[4] Diffusion limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., Volume 41 (1970), p. 4404
[5] Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., Volume 20 (1949), p. 950
[6] Mesoscopic modelling of precipitation: a tool for extracting physical parameters of phase transformations in metallic alloys, C. R. Physique, Volume 11 (2010), pp. 236-244 ( in this issue )
[7] Kinetics of the decomposition of austenite, Trans. AIME, Volume 167 (1946), p. 550
[8] Temperature field around spheroidal, cylindrical and acicular crystal growing in a supercooled melt, Dokl. Nauk SSSR, Volume 58 (1947), p. 567
[9] The role of interfacial energy during solid state phase transformations, Jernkont. Ann., Volume 141 (1957), p. 757
[10] Role of interfacial free energy and interface kinetics during growth of precipitate plates and needles, Metall. Trans., Volume 1 (1970), p. 921
[11] Kinetic expression for growth of precipitate plates, Metall. Trans., Volume 5 (1974), p. 511
[12] On the transition from local equilibrium to paraequilibrium during the growth of ferrite in Fe–Mn–C austenite, Acta Metall., Volume 37 (1989), p. 3157
[13] Diffusion-controlled lengthening of Widmanstatten plates, Acta Mater., Volume 51 (2003), p. 2089
[14] Phase field methods: microstructures, mechanical properties and complexity, C. R. Physique, Volume 11 (2010), pp. 245-256 ( in this issue )
[15] Theoretical considerations of the effect of pressure in lowering the freezing point of water, Trans. Roy. Soc. Edinburgh, Volume 16 (1849), p. 575
[16] Gibbs–Thomson effect in phase transformations, Scripta Mater., Volume 52 (2005), p. 709
[17] A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe–C–Mn: A possible role of interfacial segregation, Acta Mater., Volume 56 (2008), p. 2203
[18] Quantifying the solute drag effect of Cr on ferrite growth using controlled decarburization experiments, Metall. Mater. Trans. A, Volume 38 (2007), p. 2950
[19] H.S. Zurob, C.R. Hutchinson, Y. Brechet, G.R. Purdy, A study of the austenite to ferrite transformation in Fe–C–X alloys using decarburization experiments, in: Solid–Solid Phase Transformations in Inorganic Materials 2005, vol. 1, 2005, p. 111.
[20] Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967 (p. 39)
[21] Atomistic modeling of interfaces and their impact on microstructure and properties, Acta Mater., Volume 58 (2010), p. 1117
[22] Computing the mobility of grain boundaries, Nat. Mater., Volume 5 (2006), p. 124
[23] Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility, Acta Mater., Volume 57 (2009), p. 3704
[24] A quantitative theory of grain boundary motion and recrystallization in metals in the presence of impurities, Acta Metall., Volume 5 (1957), p. 628
[25] The impurity-drag effect in grain boundary motion, Acta Metall., Volume 10 (1962), p. 789
[26] The Role of Interfaces in Phase Transformations, Mechanism of Phase Transformations in Solids, vol. 33, The Institute of Metals, 1968 (p. 231)
[27] A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys, Acta Metall., Volume 24 (1976), p. 731
[28] A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Metall. Mater., Volume 43 (1995), p. 3763
[29] Comparison between solute drag and dissipation of Gibbs energy by diffusion, Scripta Mater., Volume 45 (2001), p. 221
[30] Effect of alloying elements on the gamma to alpha transformation in steel. I, Acta Mater., Volume 50 (2002), p. 3211
[31] Solute drag, solute trapping and diffusional dissipation of Gibbs energy, Acta Mater., Volume 47 (1999), p. 4481
[32] Discussion on local equilibrium at solid/liquid interfaces during melting, Scripta Mater., Volume 46 (2002), p. 455
[33] Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite, Scripta Mater., Volume 46 (2002), p. 447
[34] Deviation from local equilibrium at migrating phase interfaces, Acta Mater., Volume 51 (2003), p. 2803
[35] Interface conditions during diffusion-controlled phase transformations, Scripta Mater., Volume 50 (2004), p. 547
[36] Isothermal transformation of austenite, Trans. ASM, Volume 39 (1947), p. 915
[37] M. Hillert, Paraequilibrium, Institute for Metals Research, Stockholm 1953.
[38] The diffusional formation of ferrite from austenite in Fe–C–Ni alloys, Metall. Mater. Trans. A, Volume 35 (2004), p. 1211
[39] Kinetic transitions during non-partitioned ferrite growth in Fe–C–X alloys, Acta Mater., Volume 57 (2009), p. 2781
Cited by Sources:
Comments - Policy