Comptes Rendus
Computational metallurgy and changes of scale / Métallurgie numérique et changements d'échelle
Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth
Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 257-264.

A brief overview of the current state-of-the-art in choosing the interfacial compositions (or boundary conditions), for mesoscale, diffusion-controlled phase transformations, as practiced by the numerical metallurgy community, is presented. The physical processes that are currently thought to influence these values and the assumptions underlying the most common choices for the interfacial compositions are outlined. The need for a properly coupled, multiscale approach, that uses mesoscale simulation techniques to describe diffusion in the bulk phases, and atomistic simulation tools to describe the processes occurring within the interface (that influence the boundary conditions for the diffusion problem), is highlighted.

On présente dans cet article une rapide revue de l'état de l'art sur la question du choix des conditions à l'interface (ou conditions aux limites) pour des transformations de phases contrôlées par la diffusion, modélisées à l'échelle mésoscopique. On décline les procédés physiques qui sont actuellement admis comme contrôlant ces compositions d'interface, et les hypothèses sous jacentes aux différents choix communément sélectionnés. On insiste sur la nécessité de coupler correctement, dans une approche multiéchelle, impliquant en particulier l'échelle mésoscopique pour la description des champs de diffusion, et l'échelle atomistique pour décrire les procédés spécifiques de l'interface.

Published online:
DOI: 10.1016/j.crhy.2010.07.006
Keywords: Interfacial compositions, Solute drag, Interface mobility, Diffusion-controlled growth
Mot clés : Compositions interfaciales, Trainage de solute, Mobilite des interfaces, Croissance contrôlée par la diffusion

Christopher R. Hutchinson 1; Hatem S. Zurob 2

1 Department of Materials Engineering, Monash University, Clayton, 3800 Victoria, Australia
2 Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7 Canada
@article{CRPHYS_2010__11_3-4_257_0,
     author = {Christopher R. Hutchinson and Hatem S. Zurob},
     title = {Mesoscale simulations of the kinetics of solid{\textendash}solid phase transformations: {Selecting} the relevant interfacial compositions for shape-preserved growth},
     journal = {Comptes Rendus. Physique},
     pages = {257--264},
     publisher = {Elsevier},
     volume = {11},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crhy.2010.07.006},
     language = {en},
}
TY  - JOUR
AU  - Christopher R. Hutchinson
AU  - Hatem S. Zurob
TI  - Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 257
EP  - 264
VL  - 11
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.07.006
LA  - en
ID  - CRPHYS_2010__11_3-4_257_0
ER  - 
%0 Journal Article
%A Christopher R. Hutchinson
%A Hatem S. Zurob
%T Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth
%J Comptes Rendus. Physique
%D 2010
%P 257-264
%V 11
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2010.07.006
%G en
%F CRPHYS_2010__11_3-4_257_0
Christopher R. Hutchinson; Hatem S. Zurob. Mesoscale simulations of the kinetics of solid–solid phase transformations: Selecting the relevant interfacial compositions for shape-preserved growth. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 257-264. doi : 10.1016/j.crhy.2010.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.006/

[1] J.D. Teixeira; D.G. Cram; L. Bourgeois; T.J. Bastow; A.J. Hill; C.R. Hutchinson On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates, Acta Mater., Volume 56 (2008), p. 6109

[2] J.D. Teixeira; L. Bourgeois; C.W. Sinclair; C.R. Hutchinson The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation, Acta Mater., Volume 57 (2009), p. 6075

[3] E. Clouet; F. Soisson Atomic simulations of diffusional phase transformations, C. R. Physique, Volume 11 (2010), pp. 226-235 ( in this issue )

[4] H.B. Aaron; D. Fainstein; G.R. Kotler Diffusion limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., Volume 41 (1970), p. 4404

[5] C. Zener Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., Volume 20 (1949), p. 950

[6] A. Deschamps; M. Perez Mesoscopic modelling of precipitation: a tool for extracting physical parameters of phase transformations in metallic alloys, C. R. Physique, Volume 11 (2010), pp. 236-244 ( in this issue )

[7] C. Zener Kinetics of the decomposition of austenite, Trans. AIME, Volume 167 (1946), p. 550

[8] G. Ivantsov Temperature field around spheroidal, cylindrical and acicular crystal growing in a supercooled melt, Dokl. Nauk SSSR, Volume 58 (1947), p. 567

[9] M. Hillert The role of interfacial energy during solid state phase transformations, Jernkont. Ann., Volume 141 (1957), p. 757

[10] R. Trivedi Role of interfacial free energy and interface kinetics during growth of precipitate plates and needles, Metall. Trans., Volume 1 (1970), p. 921

[11] W.P. Bosze; R. Trivedi Kinetic expression for growth of precipitate plates, Metall. Trans., Volume 5 (1974), p. 511

[12] Z.K. Liu; J. Agren On the transition from local equilibrium to paraequilibrium during the growth of ferrite in Fe–Mn–C austenite, Acta Metall., Volume 37 (1989), p. 3157

[13] M. Hillert; L. Hoglund; J. Agren Diffusion-controlled lengthening of Widmanstatten plates, Acta Mater., Volume 51 (2003), p. 2089

[14] A. Finel; Y. Le Bouar; A. Gaubert; U. Salman Phase field methods: microstructures, mechanical properties and complexity, C. R. Physique, Volume 11 (2010), pp. 245-256 ( in this issue )

[15] J. Thomson Theoretical considerations of the effect of pressure in lowering the freezing point of water, Trans. Roy. Soc. Edinburgh, Volume 16 (1849), p. 575

[16] M. Perez Gibbs–Thomson effect in phase transformations, Scripta Mater., Volume 52 (2005), p. 709

[17] H.S. Zurob; C.R. Hutchinson; A. Beche; G.R. Purdy; Y.J.M. Brechet A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe–C–Mn: A possible role of interfacial segregation, Acta Mater., Volume 56 (2008), p. 2203

[18] A. Beche; H.S. Zurob; C.R. Hutchinson Quantifying the solute drag effect of Cr on ferrite growth using controlled decarburization experiments, Metall. Mater. Trans. A, Volume 38 (2007), p. 2950

[19] H.S. Zurob, C.R. Hutchinson, Y. Brechet, G.R. Purdy, A study of the austenite to ferrite transformation in Fe–C–X alloys using decarburization experiments, in: Solid–Solid Phase Transformations in Inorganic Materials 2005, vol. 1, 2005, p. 111.

[20] K.R. Kinsman; H.I. Aaronson Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967 (p. 39)

[21] Y. Mishin; M. Asta; J. Li Atomistic modeling of interfaces and their impact on microstructure and properties, Acta Mater., Volume 58 (2010), p. 1117

[22] K.G.F. Janssens; D. Olmsted; E.A. Holm; S.M. Foiles; S.J. Plimpton; P.M. Derlet Computing the mobility of grain boundaries, Nat. Mater., Volume 5 (2006), p. 124

[23] D.L. Olmsted; E.A. Holm; S.M. Foiles Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility, Acta Mater., Volume 57 (2009), p. 3704

[24] K. Lucke; K. Detert A quantitative theory of grain boundary motion and recrystallization in metals in the presence of impurities, Acta Metall., Volume 5 (1957), p. 628

[25] J.W. Cahn The impurity-drag effect in grain boundary motion, Acta Metall., Volume 10 (1962), p. 789

[26] M. Hillert The Role of Interfaces in Phase Transformations, Mechanism of Phase Transformations in Solids, vol. 33, The Institute of Metals, 1968 (p. 231)

[27] M. Hillert; B. Sundman A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys, Acta Metall., Volume 24 (1976), p. 731

[28] G.R. Purdy; Y.J.M. Brechet A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Metall. Mater., Volume 43 (1995), p. 3763

[29] M. Hillert; J. Odqvist; J. Agren Comparison between solute drag and dissipation of Gibbs energy by diffusion, Scripta Mater., Volume 45 (2001), p. 221

[30] J. Odqvist; M. Hillert; J. Agren Effect of alloying elements on the gamma to alpha transformation in steel. I, Acta Mater., Volume 50 (2002), p. 3211

[31] M. Hillert Solute drag, solute trapping and diffusional dissipation of Gibbs energy, Acta Mater., Volume 47 (1999), p. 4481

[32] M. Hillert; J. Agren Discussion on local equilibrium at solid/liquid interfaces during melting, Scripta Mater., Volume 46 (2002), p. 455

[33] M. Hillert Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite, Scripta Mater., Volume 46 (2002), p. 447

[34] M. Hillert; M. Rettenmayr Deviation from local equilibrium at migrating phase interfaces, Acta Mater., Volume 51 (2003), p. 2803

[35] M. Hillert; J. Odqvist; J. Agren Interface conditions during diffusion-controlled phase transformations, Scripta Mater., Volume 50 (2004), p. 547

[36] A. Hultgren Isothermal transformation of austenite, Trans. ASM, Volume 39 (1947), p. 915

[37] M. Hillert, Paraequilibrium, Institute for Metals Research, Stockholm 1953.

[38] C.R. Hutchinson; A. Fuchsmann; Y. Brechet The diffusional formation of ferrite from austenite in Fe–C–Ni alloys, Metall. Mater. Trans. A, Volume 35 (2004), p. 1211

[39] H.S. Zurob; C.R. Hutchinson; Y. Brechet; H. Seyedrezai; G.R. Purdy Kinetic transitions during non-partitioned ferrite growth in Fe–C–X alloys, Acta Mater., Volume 57 (2009), p. 2781

Cited by Sources:

Comments - Policy