Comptes Rendus
Computational metallurgy and changes of scale / Métallurgie numérique et changements d'échelle
Modeling grain growth and related phenomena with vertex dynamics
Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 265-273.

Grain growth is the simplest phenomena related to the evolution of a population of grains in crystalline materials. Some typical results obtained with vertex dynamics, a deterministic technique applied to the simulation of grain growth in polycrystalline materials, mostly in two dimensions (2D), are presented: (i) the dynamics of a population of grains interacting with various distributions of pinning obstacles; (ii) bulging as a possible recrystallization mechanism; and (iii) the influence of a confined geometry on grain growth as those found in electronic devices. Finally recent developments in 3D are presented.

La croissance de grains est le plus simple des phénomènes liés à l'évolution d'une population de grains dans les matériaux cristallins. Une technique de simulation numérique déterministe developpée à la fin des années 1990, la dynamique de vertex, est bien adaptée à cette classe de problèmes impliquant un grand nombre d'objets élémentaires connectés. Quelques cas d'étude sont présentés afin d'illustrer ce qui peut être appris avec cette technique de simulation.

Published online:
DOI: 10.1016/j.crhy.2010.07.015
Keywords: Grain growth, Mesoscopic scale, Numerical simulations, Vertex dynamic model
Mot clés : Croissance de grains, Échelle mésoscopique, Simulation numérique, Dynamique de vertex

Joël Lépinoux 1; Daniel Weygand 2; Marc Verdier 1

1 SIMaP, INPG, CNRS, UJF; campus Grenoble, 38042 St Martin d'Hères, France
2 Karlsruhe Institute of Technology (KIT), izbs, Kaiserstr 12, 76131 Karlsruhe, Germany
@article{CRPHYS_2010__11_3-4_265_0,
     author = {Jo\"el L\'epinoux and Daniel Weygand and Marc Verdier},
     title = {Modeling grain growth and related phenomena with vertex dynamics},
     journal = {Comptes Rendus. Physique},
     pages = {265--273},
     publisher = {Elsevier},
     volume = {11},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crhy.2010.07.015},
     language = {en},
}
TY  - JOUR
AU  - Joël Lépinoux
AU  - Daniel Weygand
AU  - Marc Verdier
TI  - Modeling grain growth and related phenomena with vertex dynamics
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 265
EP  - 273
VL  - 11
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.07.015
LA  - en
ID  - CRPHYS_2010__11_3-4_265_0
ER  - 
%0 Journal Article
%A Joël Lépinoux
%A Daniel Weygand
%A Marc Verdier
%T Modeling grain growth and related phenomena with vertex dynamics
%J Comptes Rendus. Physique
%D 2010
%P 265-273
%V 11
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2010.07.015
%G en
%F CRPHYS_2010__11_3-4_265_0
Joël Lépinoux; Daniel Weygand; Marc Verdier. Modeling grain growth and related phenomena with vertex dynamics. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 265-273. doi : 10.1016/j.crhy.2010.07.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.015/

[1] P. Haasen Physikalische Metallkunde, Springer, Berlin, 1994

[2] J.M. Howe Interfaces in Materials, Wiley, 1997

[3] D. Weygand; Y. Bréchet; J. Lépinoux Phil. Mag. B, 78 (1998), pp. 329-352

[4] D. Weygand; Y. Bréchet; J. Lépinoux; W. Gust Phil. Mag. B, 79 (1999), p. 703

[5] D. Weygand; Y. Bréchet; J. Lépinoux Acta Mater., 47 (1999), p. 961

[6] D. Weygand; Y. Bréchet; J. Lépinoux Phil. Mag. B, 80 (2000), p. 1987

[7] D. Weygand; Y. Bréchet; J. Lépinoux Acta Mater., 46 (1998), p. 6559

[8] D. Weygand; Y. Bréchet; J. Lépinoux Interface Sci., 7 (1999), p. 285

[9] K. Kawasaki; T. Nagai; K. Nakashima Phil. Mag. B, 60 (1989), p. 399

[10] K. Fuchizaki; T. Kusaba; K. Kawasaki Phil. Mag. B, 71 (1995), p. 333

[11] M. Syha; D. Weygand Mod. Sim. Mat. Sci. Eng., 18 (2010), p. 015010

[12] H.J. Frost; C.V. Thompson; C.L. Howe; J. Wang Scripta Metall., 22 (1988), p. 65

[13] Z.Z. Du; R.M. McMecking; A.C.F. Cocks Z. Metallk., 94 (2003), p. 368

[14] M. Selzer, D. Weygand, B. Nestler, in preparation.

[15] I. Steinbach Mod. Sim. Mat. Sci. Eng., 17 (2009), p. 073001

[16] N. Moelans; B. Blanpain; P. Wollants Phys. Rev. Lett., 101 (2008), p. 025502

[17] C.S. Smith Trans. Metall. Soc. A.I.M.E., 175 (1948), p. 15

[18] A. Harun; E.A. Holm; M.P. Clode; M.A. Miodownik Acta Mater., 54 (2006), p. 3261

[19] G. Couturier; R. Doherty; C. Maurice; R. Fortunier Acta Mater., 53 (2005), p. 977

[20] Y. Bréchet J. Phys. III France, 4 (1994), p. 1011

[21] P.M. Hazzeldine; R.D. Oldershaw Phil. Mag. A, 61 (1990), p. 579

[22] J.E. Bailey; P.B. Hirsch Proc. Roy. Soc., 36 (1997), p. 11

[23] D.N. Lee J. Electronic Materials, 32 (2003), p. 1012

[24] G. Brunoldi; K.J. Kozaczek; B. Gittleman; T. Marangon Microelec. Eng., 83 (2006), p. 2206

[25] D. Weygand; M. Verdier; J. Lepinoux Mod. Sim. Mat. Sci. Eng., 17 (2009), p. 064005

[26] R.D. MacPherson; D.J. Srolovitz Nature, 446 (2007), pp. 1053-1055

[27] F. Uyar; S.R. Wilson; J. Gruber; S. Lee; S. Sintay; A. Rollett; D.S. Srolovitz Int. J. Mat. Res. (2009), p. 543

[28] F.J. Humphreys Acta Mater., 45 (1997), p. 4231

[29] A. Rollett; S.B. Lee; R. Campman; G.S. Rohrer Annu. Rev. Mater. Res., 37 (2007), p. 627

[30] W. Ludwig; P. Reischig; A. King; M. Herbig; E.M. Lauridsen; G. Johnson; T.J. Marrow; J.-Y. Buffiere Rev. Sci. Inst., 80 (2009) no. 3, p. 033905

Cited by Sources:

Comments - Policy