Comptes Rendus
Computational metallurgy and changes of scale / Métallurgie numérique et changements d'échelle
Phase field methods: Microstructures, mechanical properties and complexity
Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 245-256.

Structural and functional materials inherit their macroscopic properties from the complex microstructures they develop at mesoscale. We discuss here the ability of the phase field method to capture the physical mechanisms at the origin of these complex morphologies in two different situations. First, we analyze the polytwinned microstructures observed in martensitic alloys, and show that, due to the large rotations involved in the accommodation mechanism, a correct modeling of the microstructures requires the use of a geometrically nonlinear model. Second, we present an elasto-viscoplastic phase field model and show its application to the understanding of the rafting phenomena observed in superalloys under creep.

Les matériaux à vocation structurale et fonctionnelle doivent leurs propriétés macroscopiques aux arrangements microstructuraux complexes qu'ils développent à l'échelle mésoscopique. Nous discutons ici des potentialités de la méthode des champs de phase à reproduire correctement les mécanismes physiques responsables de la formation de ces microstructures dans deux situations différentes. Premièrement, nous analysons les microstructures lamellaires observées dans les alliages martensitiques, et nous montrons que, en raison des larges rotations de réseau requises par les mécanismes d'accomodation élastique, une modélisation correcte des microstructures nécessite l'utilisation d'une formulation géométriquement non-linéaire. Deuxièmement, nous présentons un modèle champ de phase élasto-visco-plastique et montrons son application à la compréhension des phénomènes de mises en radeau observés dans les superalliages en fluage.

Published online:
DOI: 10.1016/j.crhy.2010.07.014
Keywords: Phase field method, Polytwinned microstructure, Elasto-viscoplastic phase field model
Mot clés : Méthode des champs de phase, Microstructure lamellaire, Modèle champ de phase élasto-visco-plastique

Alphonse Finel 1; Y. Le Bouar 1; A. Gaubert 2; U. Salman 1

1 Laboratoire d'étude des microstructures, CNRS/ONERA, BP 72, 92322 Châtillon, France
2 DMSM, ONERA, BP 72, 92322 Châtillon, France
@article{CRPHYS_2010__11_3-4_245_0,
     author = {Alphonse Finel and Y. Le Bouar and A. Gaubert and U. Salman},
     title = {Phase field methods: {Microstructures,} mechanical properties and complexity},
     journal = {Comptes Rendus. Physique},
     pages = {245--256},
     publisher = {Elsevier},
     volume = {11},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crhy.2010.07.014},
     language = {en},
}
TY  - JOUR
AU  - Alphonse Finel
AU  - Y. Le Bouar
AU  - A. Gaubert
AU  - U. Salman
TI  - Phase field methods: Microstructures, mechanical properties and complexity
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 245
EP  - 256
VL  - 11
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.07.014
LA  - en
ID  - CRPHYS_2010__11_3-4_245_0
ER  - 
%0 Journal Article
%A Alphonse Finel
%A Y. Le Bouar
%A A. Gaubert
%A U. Salman
%T Phase field methods: Microstructures, mechanical properties and complexity
%J Comptes Rendus. Physique
%D 2010
%P 245-256
%V 11
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2010.07.014
%G en
%F CRPHYS_2010__11_3-4_245_0
Alphonse Finel; Y. Le Bouar; A. Gaubert; U. Salman. Phase field methods: Microstructures, mechanical properties and complexity. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 245-256. doi : 10.1016/j.crhy.2010.07.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.014/

[1] K. Bhattacharya Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press, 2003

[2] Ph. Boullay; D. Schryvers; R.V. Kohn Bending martensite needles in Ni65Al35 investigated by two-dimensional elasticity and high-resolution transmission electron microscopy, Phys. Rev. B, Volume 64 (2001) no. 14

[3] D. Schryvers; P. Boullay; P.L. Potapov; R.V. Kohn; J.M. Ball Microstructures and interfaces in Ni–Al martensite: comparing HRTEM observations with continuum theories, Int. J. Solids Struct., Volume 39 (2002), pp. 3543-3554

[4] D. Schryvers; P. Boullay; R.V. Kohn; J.M. Ball Lattice deformations at martensite–martensite interfaces in Ni–Al, J. Physique IV, Volume 11 (2001), pp. 23-30

[5] S.S. Antman Nonlinear Problems of Elasticity, Springer, 2005

[6] L.D. Landau; E.M. Lifshitz Theory of Elasticity, Course of Theoretical Physics, Butterworth–Heinemann, 1984

[7] W.C. Kerr; M.G. Killough; A. Saxena; P.J. Swart; A.R. Bishop Role of elastic compatibility in martensitic texture evolution, Phase Transitions, Volume 69 (1999) no. 3, pp. 247-270

[8] A.E. Jacobs Landau theory of structures in tetragonal-orthorhombic ferroelastics, Phys. Rev. B, Volume 61 (2000) no. 10, pp. 6587-6595

[9] G.S. Bales; R.J. Gooding Interfacial dynamics at a first-order phase transition involving strain: Dynamical twin formation, Phys. Rev. Lett., Volume 67 (1991) no. 24, pp. 3412-3415

[10] O.U. Salman, Modeling of spatio-temporal dynamics and patterning mechanisms of martensites, PhD thesis, Paris 6, June 2009.

[11] B.K. Muite; O.U. Salman Computations of geometrically linear and nonlinear Ginzburg–Landau models for martensitic pattern formation (P. Šittner; V. Paidar; L. Heller; H. Seiner, eds.), ESOMAT 2009, EDP Sciences, 2009, p. 03008

[12] Randall J. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, SIAM, 2007 (ISBN: 978-0-898716-29-0)

[13]

This parameterization is difficult since it requires the knowledge of the twin interfacial energy and elastic constants of the martensite. Unfortunately, as far as we know, these constants are not fully known.

[14] D. Ayrault, A. Fredholm, J.L. Strudel, in: Advanced Materials and Processing Techniques for Structural Applications, Paris, France, Sept. 1987, pp. 71–81.

[15] V. Brien; B. Décamps Low cycle fatigue of a nickel based superalloys at high temperature: deformation microstructures, Mater. Sci. Eng., Volume 316 (2001) no. 1–2, pp. 18-31

[16] N. Matan; D.C. Cox; C.M.F. Rae; R.C. Reed On the kinetics of rafting in CMSX-4 superalloy single crystals, Acta Mater., Volume 47 ( May 1999 ) no. 7, pp. 2031-2045

[17] M. Véron; Y. Bréchet; F. Louchet Strain induced directional coarsening in Ni based superalloys, Scripta Mater., Volume 34 (1996), p. 1883

[18] A. Pineau Influence of uniaxial stress on the morphology of coherent precipitates during coarsening – elastic energy considerations, Acta Metall., Volume 24 ( June 1976 ) no. 6, pp. 559-564

[19] G. Boussinot; Y. Le Bouar; A. Finel Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, Acta Mater., Volume 58 (2010), pp. 4170-4181

[20] N. Ratel; G. Bruno; P. Bastie; T. Mori Plastic strain-induced rafting of γ precipitates in Ni superalloys: Elasticity analysis, Acta Mater., Volume 54 (2006) no. 19, pp. 5087-5093

[21] D. Rodney; A. Finel Phase field methods and dislocations, MRS Symp. Proc., vol. 652, 2001, p. Y4

[22] Y.U. Wang; Y.M. Jin; A.M. Cuitiño; A.G. Khachaturyan Nanoscale phase field microelasticity theory of dislocations: model and 3D-simulations, Acta Mater., Volume 49 (2001), pp. 1847-1857

[23] D. Rodney; Y. Le Bouar; A. Finel Phase field methods and dislocations, Acta Mater., Volume 51 (2003) no. 1, pp. 17-30

[24] R.L.J.M. Ubachs; P.J.G. Schreurs; M.G.D. Geers Phase field dependent viscoplastic behaviour of solder alloys, Int. J. Solids Struct., Volume 42 (2005), pp. 2533-2558

[25] T. Uehara; T. Tsujino; N. Ohno Elasto-plastic simulation of stress evolution during grain growth using a phase field model, J. Cryst. Growth, Volume 300 (2007), pp. 530-537

[26] X.H. Guo; S.Q. Shi; Q.M. Zhang; X.Q. Ma An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium, part I: smooth specimens, J. Nucl. Mater., Volume 378 (2008) no. 1, pp. 110-119

[27] K. Ammar; B. Appolaire; G. Cailletaud; S. Forest Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media, Eur. J. Comput. Mech., Volume 18 (2009) no. 5–6

[28] Viscoplastic Phase Field Modelling of Rafting in Ni Base Superalloys (Dominique Jeulin; Samuel Forest, eds.), Continuum Models and Discrete Systems CMDS, vol. 11, Les Presses de l'École des Mines de Paris, 2008

[29] G. Boussinot; A. Finel; Y. Le Bouar Phase-field modeling of bimodal microstructures in nickel-based superalloys, Acta Mater., Volume 57 (2009) no. 3, pp. 921-931

[30] G. Cailletaud, Une approche micromécanique phénomènologique du comportement inélastique des métaux, PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 1987.

[31] L. Méric; P. Poubanne; G. Cailletaud Single crystal modeling for structural calculations: Part 1 – model presentation, J. Eng. Mater. Technol., Volume 113 (1991) no. 1, pp. 162-170

[32] A. Gaubert; Y. Le Bouar; A. Finel Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, Philos. Mag., Volume 90 (2010) no. 1, pp. 375-404

[33] F. Diologent, Comportement en fluage et en traction de superalliages monocristallins à base de Nickel, PhD thesis, Université de Paris 11-Orsay, 2002.

[34] Anais Gaubert; Samuel Forest Modeling size effect dependence on mechanical behaviour using a Cosserat crystal plasticity framework (A. El Azab, ed.), Tackling Materials Complexities Via Computational Science 3332008 – Multiscale Materials Modeling, Department of Scientific Computing, Tallahassee États-Unis, 2008, pp. 174-177

[35] E.P. Busso; F.T. Meissonier; N.P. O'Dowd Gradient-dependant deformation of 2-phase single crystal, J. Mech. Phys. Solids, Volume 48 (2000)

Cited by Sources:

Comments - Policy