Structural and functional materials inherit their macroscopic properties from the complex microstructures they develop at mesoscale. We discuss here the ability of the phase field method to capture the physical mechanisms at the origin of these complex morphologies in two different situations. First, we analyze the polytwinned microstructures observed in martensitic alloys, and show that, due to the large rotations involved in the accommodation mechanism, a correct modeling of the microstructures requires the use of a geometrically nonlinear model. Second, we present an elasto-viscoplastic phase field model and show its application to the understanding of the rafting phenomena observed in superalloys under creep.
Les matériaux à vocation structurale et fonctionnelle doivent leurs propriétés macroscopiques aux arrangements microstructuraux complexes qu'ils développent à l'échelle mésoscopique. Nous discutons ici des potentialités de la méthode des champs de phase à reproduire correctement les mécanismes physiques responsables de la formation de ces microstructures dans deux situations différentes. Premièrement, nous analysons les microstructures lamellaires observées dans les alliages martensitiques, et nous montrons que, en raison des larges rotations de réseau requises par les mécanismes d'accomodation élastique, une modélisation correcte des microstructures nécessite l'utilisation d'une formulation géométriquement non-linéaire. Deuxièmement, nous présentons un modèle champ de phase élasto-visco-plastique et montrons son application à la compréhension des phénomènes de mises en radeau observés dans les superalliages en fluage.
Mot clés : Méthode des champs de phase, Microstructure lamellaire, Modèle champ de phase élasto-visco-plastique
Alphonse Finel 1; Y. Le Bouar 1; A. Gaubert 2; U. Salman 1
@article{CRPHYS_2010__11_3-4_245_0, author = {Alphonse Finel and Y. Le Bouar and A. Gaubert and U. Salman}, title = {Phase field methods: {Microstructures,} mechanical properties and complexity}, journal = {Comptes Rendus. Physique}, pages = {245--256}, publisher = {Elsevier}, volume = {11}, number = {3-4}, year = {2010}, doi = {10.1016/j.crhy.2010.07.014}, language = {en}, }
TY - JOUR AU - Alphonse Finel AU - Y. Le Bouar AU - A. Gaubert AU - U. Salman TI - Phase field methods: Microstructures, mechanical properties and complexity JO - Comptes Rendus. Physique PY - 2010 SP - 245 EP - 256 VL - 11 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2010.07.014 LA - en ID - CRPHYS_2010__11_3-4_245_0 ER -
Alphonse Finel; Y. Le Bouar; A. Gaubert; U. Salman. Phase field methods: Microstructures, mechanical properties and complexity. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 245-256. doi : 10.1016/j.crhy.2010.07.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.014/
[1] Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press, 2003
[2] Bending martensite needles in Ni65Al35 investigated by two-dimensional elasticity and high-resolution transmission electron microscopy, Phys. Rev. B, Volume 64 (2001) no. 14
[3] Microstructures and interfaces in Ni–Al martensite: comparing HRTEM observations with continuum theories, Int. J. Solids Struct., Volume 39 (2002), pp. 3543-3554
[4] Lattice deformations at martensite–martensite interfaces in Ni–Al, J. Physique IV, Volume 11 (2001), pp. 23-30
[5] Nonlinear Problems of Elasticity, Springer, 2005
[6] Theory of Elasticity, Course of Theoretical Physics, Butterworth–Heinemann, 1984
[7] Role of elastic compatibility in martensitic texture evolution, Phase Transitions, Volume 69 (1999) no. 3, pp. 247-270
[8] Landau theory of structures in tetragonal-orthorhombic ferroelastics, Phys. Rev. B, Volume 61 (2000) no. 10, pp. 6587-6595
[9] Interfacial dynamics at a first-order phase transition involving strain: Dynamical twin formation, Phys. Rev. Lett., Volume 67 (1991) no. 24, pp. 3412-3415
[10] O.U. Salman, Modeling of spatio-temporal dynamics and patterning mechanisms of martensites, PhD thesis, Paris 6, June 2009.
[11] Computations of geometrically linear and nonlinear Ginzburg–Landau models for martensitic pattern formation (P. Šittner; V. Paidar; L. Heller; H. Seiner, eds.), ESOMAT 2009, EDP Sciences, 2009, p. 03008
[12] Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, SIAM, 2007 (ISBN: 978-0-898716-29-0)
[13]
This parameterization is difficult since it requires the knowledge of the twin interfacial energy and elastic constants of the martensite. Unfortunately, as far as we know, these constants are not fully known.
[14] D. Ayrault, A. Fredholm, J.L. Strudel, in: Advanced Materials and Processing Techniques for Structural Applications, Paris, France, Sept. 1987, pp. 71–81.
[15] Low cycle fatigue of a nickel based superalloys at high temperature: deformation microstructures, Mater. Sci. Eng., Volume 316 (2001) no. 1–2, pp. 18-31
[16] On the kinetics of rafting in CMSX-4 superalloy single crystals, Acta Mater., Volume 47 ( May 1999 ) no. 7, pp. 2031-2045
[17] Strain induced directional coarsening in Ni based superalloys, Scripta Mater., Volume 34 (1996), p. 1883
[18] Influence of uniaxial stress on the morphology of coherent precipitates during coarsening – elastic energy considerations, Acta Metall., Volume 24 ( June 1976 ) no. 6, pp. 559-564
[19] Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, Acta Mater., Volume 58 (2010), pp. 4170-4181
[20] Plastic strain-induced rafting of precipitates in Ni superalloys: Elasticity analysis, Acta Mater., Volume 54 (2006) no. 19, pp. 5087-5093
[21] Phase field methods and dislocations, MRS Symp. Proc., vol. 652, 2001, p. Y4
[22] Nanoscale phase field microelasticity theory of dislocations: model and 3D-simulations, Acta Mater., Volume 49 (2001), pp. 1847-1857
[23] Phase field methods and dislocations, Acta Mater., Volume 51 (2003) no. 1, pp. 17-30
[24] Phase field dependent viscoplastic behaviour of solder alloys, Int. J. Solids Struct., Volume 42 (2005), pp. 2533-2558
[25] Elasto-plastic simulation of stress evolution during grain growth using a phase field model, J. Cryst. Growth, Volume 300 (2007), pp. 530-537
[26] An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium, part I: smooth specimens, J. Nucl. Mater., Volume 378 (2008) no. 1, pp. 110-119
[27] Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media, Eur. J. Comput. Mech., Volume 18 (2009) no. 5–6
[28] Viscoplastic Phase Field Modelling of Rafting in Ni Base Superalloys (Dominique Jeulin; Samuel Forest, eds.), Continuum Models and Discrete Systems CMDS, vol. 11, Les Presses de l'École des Mines de Paris, 2008
[29] Phase-field modeling of bimodal microstructures in nickel-based superalloys, Acta Mater., Volume 57 (2009) no. 3, pp. 921-931
[30] G. Cailletaud, Une approche micromécanique phénomènologique du comportement inélastique des métaux, PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 1987.
[31] Single crystal modeling for structural calculations: Part 1 – model presentation, J. Eng. Mater. Technol., Volume 113 (1991) no. 1, pp. 162-170
[32] Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, Philos. Mag., Volume 90 (2010) no. 1, pp. 375-404
[33] F. Diologent, Comportement en fluage et en traction de superalliages monocristallins à base de Nickel, PhD thesis, Université de Paris 11-Orsay, 2002.
[34] Modeling size effect dependence on mechanical behaviour using a Cosserat crystal plasticity framework (A. El Azab, ed.), Tackling Materials Complexities Via Computational Science 3332008 – Multiscale Materials Modeling, Department of Scientific Computing, Tallahassee États-Unis, 2008, pp. 174-177
[35] Gradient-dependant deformation of 2-phase single crystal, J. Mech. Phys. Solids, Volume 48 (2000)
Cited by Sources:
Comments - Policy