Comptes Rendus
Interactions between radiofrequencies signals and living organisms
In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal
[Détection in situ de l'apoptose et de la gliose dans le cerveau de jeunes rats exposés in utero à un signal Wi-Fi]
Comptes Rendus. Physique, Volume 11 (2010) no. 9-10, pp. 592-601.

Des rates gestantes ont été exposées corps-entier à un signal Wi-Fi, sans contrainte de mobilité, dans une chambre réverbérante à des niveaux d'exposition de 0 ; 0,08 ; 0,4 et 4 W/kg et ce, durant les deux dernières semaines de gestation. Suite à cette exposition in utero quotidienne (2 h, 5 jours/semaine), chaque portée obtenue a été divisée en deux groupes dont un, poursuivant l'exposition jusqu'à 5 semaines après la naissance. La détection de gliose et de cellules apoptotiques a été réalisée au niveau de différentes régions du cerveau des jeunes rats. Aucune altération n'a été observée suite à l'exposition Wi-Fi in utero et post-natale.

Pregnant rats were daily whole-body exposed or sham-exposed to a Wi-Fi signal in a free-running reverberation chamber at 0, 0.08, 0.4, and 4 W/kg for 2 h during the last 2 weeks of gestation (5 days/week). Following this in utero exposure, the pups were divided into two groups and 1 group continued exposure for 5 weeks after birth. Several brain areas were examined for gliosis and apoptotic cells. Comparison among sham and exposed groups revealed no significant differences, suggesting that in utero and post-natal exposure to Wi-Fi did not damage the brains of the young rats.

Publié le :
DOI : 10.1016/j.crhy.2010.10.005
Keywords: Wi-Fi signal, Young animals, Brain, In utero exposure, Apoptosis, Gliosis
Mot clés : Signal Wi-Fi, Jeunes animaux, Cerveau, Exposition in utero, Apoptose, Gliose
Saliha Aït-Aïssa 1, 2 ; Bernard Billaudel 1 ; Florence Poulletier De Gannes 1, 2 ; Annabelle Hurtier 1 ; Emmanuelle Haro 1 ; Murielle Taxile 1 ; Gilles Ruffie 3 ; Axel Athane 2 ; Bernard Veyret 1, 2 ; Isabelle Lagroye 1, 2

1 Bordeaux University, IMS Laboratory UMR 5218 CNRS, Bioelectronics group, IPB - ENSCBP, 16, avenue Pey-Berland, 33607 Pessac cedex, France
2 Bioelectromagnetics laboratory, École pratique des hautes études, ENSCBP, 33607 Pessac cedex, France
3 Bordeaux University, IMS Lab., IMS Transfert-A2M, ENSCBP, 33607 Pessac cedex, France
@article{CRPHYS_2010__11_9-10_592_0,
     author = {Saliha A{\"\i}t-A{\"\i}ssa and Bernard Billaudel and Florence Poulletier De Gannes and Annabelle Hurtier and Emmanuelle Haro and Murielle Taxile and Gilles Ruffie and Axel Athane and Bernard Veyret and Isabelle Lagroye},
     title = {In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a {Wi-Fi} signal},
     journal = {Comptes Rendus. Physique},
     pages = {592--601},
     publisher = {Elsevier},
     volume = {11},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crhy.2010.10.005},
     language = {en},
}
TY  - JOUR
AU  - Saliha Aït-Aïssa
AU  - Bernard Billaudel
AU  - Florence Poulletier De Gannes
AU  - Annabelle Hurtier
AU  - Emmanuelle Haro
AU  - Murielle Taxile
AU  - Gilles Ruffie
AU  - Axel Athane
AU  - Bernard Veyret
AU  - Isabelle Lagroye
TI  - In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 592
EP  - 601
VL  - 11
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.10.005
LA  - en
ID  - CRPHYS_2010__11_9-10_592_0
ER  - 
%0 Journal Article
%A Saliha Aït-Aïssa
%A Bernard Billaudel
%A Florence Poulletier De Gannes
%A Annabelle Hurtier
%A Emmanuelle Haro
%A Murielle Taxile
%A Gilles Ruffie
%A Axel Athane
%A Bernard Veyret
%A Isabelle Lagroye
%T In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal
%J Comptes Rendus. Physique
%D 2010
%P 592-601
%V 11
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2010.10.005
%G en
%F CRPHYS_2010__11_9-10_592_0
Saliha Aït-Aïssa; Bernard Billaudel; Florence Poulletier De Gannes; Annabelle Hurtier; Emmanuelle Haro; Murielle Taxile; Gilles Ruffie; Axel Athane; Bernard Veyret; Isabelle Lagroye. In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal. Comptes Rendus. Physique, Volume 11 (2010) no. 9-10, pp. 592-601. doi : 10.1016/j.crhy.2010.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.10.005/

[1] E.C. Hirsch Animal models in neurodegenerative diseases, Neuropsychiatric Disorder: An Integrative Approach, 2007, pp. 87-90

[2] A.R. Little; J.P. O'Callaghan Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines?, Neurotoxicology, Volume 22 (2001), pp. 607-618

[3] H. Franke et al. The reaction of astrocytes and neurons in the hippocampus of adult rats during chronic ethanol treatment and correlations to behavioral impairments, Alcohol, Volume 14 (1997), pp. 445-454

[4] J.P. O'Callaghan; K. Sriram Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity, Expert Opin. Drug Safety, Volume 4 (2005), pp. 433-442

[5] V. Sarthy Focus on molecules: glial fibrillary acidic protein (GFAP), Exp. Eye Res., Volume 84 (2007), pp. 381-382

[6] M.R. Verardo et al. Abnormal reactivity of Müller cells after retinal detachment in mice deficient in GFAP and vimentin, Invest. Ophthalmol. Vis. Sci., Volume 49 (2008), pp. 3659-3665

[7] R.G. Nagele et al. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease, Neurobiol. Aging, Volume 25 (2004), pp. 663-674

[8] R. Li et al. GFAP mutations in Alexander disease, Int. J. Dev. Neurosci., Volume 20 (2002), pp. 259-268

[9] M. Pekny; M. Pekna Astrocyte intermediate filaments in CNS pathologies and regeneration, J. Pathol., Volume 204 (2004), pp. 428-437

[10] K. Fritze et al. Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain, Neuroscience, Volume 81 (1997), pp. 627-639

[11] A.L. Mausset-Bonnefont et al. Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain, Neurobiol. Dis., Volume 17 (2004), pp. 445-454

[12] R. Paulraj; J. Behari Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation, Electromagn. Biol. Med., Volume 25 (2006), pp. 61-70

[13] R.W. Oppenheim Cell death during development of the nervous system, Annu. Rev. Neurosci., Volume 14 (1991), pp. 453-501

[14] R. Franco et al. Environmental toxicity, oxidative stress and apoptosis: ménage à trois, Mutat. Res., Volume 674 (2009), pp. 3-22

[15] O. Ekshyyan; T.Y. Aw Apoptosis: a key in neurodegenerative disorders, Curr. Neurovasc. Res., Volume 1 (2004), pp. 355-371

[16] M. Okouchi et al. Neuronal apoptosis in neurodegeneration, Antioxid. Redox Signal, Volume 9 (2007), pp. 1059-1096

[17] A.M. Gorman Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling, J. Cell Mol. Med., Volume 12 (2008), pp. 2263-2280

[18] G.J. Hook et al. Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation, Radiat. Res., Volume 161 (2004), pp. 193-200

[19] P. Merola et al. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field, Bioelectromagnetics, Volume 27 (2006), pp. 164-171

[20] M. Buttiglione et al. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells, J. Cell Physiol., Volume 213 (2007), pp. 759-767

[21] A. Höytö et al. Radiofrequency radiation does not significantly affect ornithine decarboxylase activity, proliferation, or caspase-3 activity of fibroblasts in different physiological conditions, Int. J. Radiat. Biol., Volume 84 (2008), pp. 727-733

[22] Y. Cao et al. 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells, J. Toxicol. Environ. Health A, Volume 72 (2009), pp. 727-732

[23] T.H. Kim et al. Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain, Exp. Mol. Med., Volume 40 (2008), pp. 294-303

[24] F. Yilmaz et al. Whole-body exposure of radiation emitted from 900 MHz mobile phones does not seem to affect the levels of anti-apoptotic bcl-2 protein, Electromagn. Biol. Med., Volume 27 (2008), pp. 65-72

[25] S. Dasdag et al. Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain, Electromagn. Biol. Med., Volume 28 (2009), pp. 342-354

[26] V. Joubert et al. No apoptosis is induced in rat cortical neurons exposed to GSM phone fields, Bioelectromagnetics, Volume 28 (2007), pp. 115-121

[27] V. Joubert et al. Microwave exposure of neuronal cells in vitro: study of apoptosis, Int. J. Radiat. Biol., Volume 82 (2006), pp. 267-275

[28] A. Höytö et al. Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants, Radiat. Res., Volume 170 (2008), pp. 235-243

[29] J. Moquet et al. Exposure to low level GSM 935 MHz radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells, Radiat. Prot. Dosimetry, Volume 131 (2008), pp. 287-296

[30] V. Joubert et al. Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons, Radiat. Res., Volume 169 (2008), pp. 38-45

[31] R. Zhao et al. Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay, Toxicology, Volume 235 (2007), pp. 167-175

[32] X.R. Zhou et al. The study of retinal ganglion cell apoptosis induced by different intensities of microwave irradiation, Ophthalmologica, Volume 222 (2008), pp. 6-10

[33] T. Wu et al. Whole-body newborn and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz, Phys. Med. Biol., Volume 55 (2010), pp. 1619-1630

[34] A. Peyman; A.A. Rezazadeh; C. Gabriel Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies, Phys. Med. Biol., Volume 46 (2001) no. 6, pp. 1617-1629

[35] S. Aït-Aïssa, et al., In-utero and early-life exposure of rats to a Wi-Fi signal: gestational outcome and screening of immune markers in sera, Bioelectromagnetics, submitted for publication (manuscript number BEM-10-0132).

[36] R. Bartesaghi; S. Severi; S. Guidi Effects of early environment on pyramidal neuron morphology in field CA1 of the Guinea-pig, Neuroscience, Volume 116 (2003), pp. 715-732

[37] M. Sancho-Tello et al. Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures, Glia, Volume 15 (1995) no. 2, pp. 157-166

[38] S.K.R. Pixley; De Veilis Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin, Develop. Brain Res., Volume 15 (1984) no. 2, pp. 201-209

[39] M. Huleihel; H. Golan; M. Hallak Intrauterine infection/inflammation during pregnancy and offspring brain damages: possible mechanisms involved, Reprod. Biol. Endocrinol., Volume 2 (2004), p. 17

[40] C. Zimmer et al. Altered glial fibrillary acidic protein immunoreactivity in rat brain following chronic hypoxia, Neuroscience, Volume 40 (1991), pp. 353-361

[41] G. Krinke Developmental neurotoxicity. The Laboratory Rat. The Handbook of Experimental Animals, Academic Press, 2000 (756 pages)

[42] M. Guizzetti; M. Catlin; L.G. Costa Effects of ethanol on glial cell proliferation: relevance to the fetal alcohol syndrome, Fetal and Pediatric Pathology, Volume 18 (1998), pp. 433-443

[43] F.P. Perez et al. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response, Exp. Gerontol., Volume 43 (2008), pp. 307-316

[44] F. Razavi-Encha; J.C. Larroche; D. Gaillard Infantile familial encephalopathy with cerebral calcifications and leukodystrophy, Neuropediatrics, Volume 19 (1988), pp. 72-79

[45] Y. Kitamura; Y. Nomura Stress proteins and glial functions: possible therapeutic targets for neurodegenerative disorders, Pharmacol. Ther., Volume 97 (2003), pp. 35-53

[46] M. Ammari et al. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain, Biomedicine & Pharmacotherapy, Volume 62 (2008), pp. 273-281

[47] E. Brillaud; A. Piotrowski; R. de Seze Effect of an acute 900 MHz GSM exposure on glia in the rat brain: a time-dependent study, Toxicology, Volume 238 (2007), pp. 23-33

[48] T. Thorlin et al. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation, Radiat. Res., Volume 166 (2006), pp. 409-421

[49] D. Rice; S. Barone Critical periods of vulnerability for the developing nervous system: evidence from humans and animal, Models Environ. Health Perspect. Suppl., Volume 108 (2000), p. S3

[50] C.R. Green et al. Chronic prenatal ethanol exposure increases apoptosis in the hippocampus of the term fetal Guinea pig, Neurotoxicol. Teratol., Volume 27 (2005), pp. 871-881

[51] P. Jaatinen; J. Rintala Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum, Cerebellum, Volume 7 (2008), pp. 332-347

[52] S.M. Mooney; M.W. Miller Effects of prenatal exposure to ethanol on the expression of bcl-2, bax and caspase 3 in the developing rat cerebral cortex and thalamus, Brain Res., Volume 911 (2001), pp. 71-81

[53] D.L. Van den Hove et al. Prenatal stress and neonatal rat brain development, Neuroscience, Volume 137 (2006), pp. 145-155

[54] F. Poulletier de Gannes et al. Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration, Radiat. Res., Volume 172 (2009), pp. 359-367

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Aluminum affects glial system and behavior of rats

Hasna Erazi; Wafa Sansar; Samir Ahboucha; ...

C. R. Biol (2010)


Neurogenesis in the adult central nervous system

Philippe Taupin

C. R. Biol (2006)


Effects of radiofrequency field on the blood-brain barrier: A systematic review from 2005 to 2009

Anne Perrin; Celine Cretallaz; Alice Collin; ...

C. R. Phys (2010)