Comptes Rendus
Interactions between radiofrequencies signals and living organisms
The brain is not a radio receiver for wireless phone signals: Human tissue does not demodulate a modulated radiofrequency carrier
[Le cerveau n'est pas un récepteur radio pour les signaux de téléphone mobile : Les tissus humains ne démodulent pas une porteuse radiofréquence modulée]
Comptes Rendus. Physique, Volume 11 (2010) no. 9-10, pp. 585-591.

Il a été suggéré que les modulations basse fréquence des signaux radiofréquences émis par un téléphone sans fil pourraient être démodulées par les tissus humains. Si cela arrivait, cela pourrait induire des interactions avec les ions des tissus et entraîner d'éventuelles conséquences biologiques. Au cours d'expériences récentes, il a été montré que les cellules biologiques ne présentaient pas de non-linéarités susceptibles de démoduler ces signaux basses fréquences. Ceci écarte toute hypothèse d'interactions entre les ondes radiofréquences et les systèmes biologiques liées à de tels mécanismes de démodulation. Le téléphone mobile n'induit pas de risque athermique pour votre cerveau.

It has been suggested that the low frequency modulations of the radiofrequency (RF) signal from a wireless phone could be demodulated by human tissue. If this occurred it could lead to interactions with ions in the tissue, with possible biological consequences. In recent experiments it has been shown that biological cells do not exhibit significant electrical nonlinearity to be able to demodulate low frequency signals present as modulations of a RF carrier. This makes irrelevant any hypothetical interactions between RF electromagnetic waves and biological systems involving such demodulation mechanisms. Your wireless phone is not an athermal hazard to your brain.

Publié le :
DOI : 10.1016/j.crhy.2010.09.002
Keywords: Nonlinearity, Demodulation, Wireless telephones
Mot clés : Non-linéarité, Démodulation, Téléphones sans fil, Téléphone mobile
Christopher C. Davis 1 ; Quirino Balzano 1

1 Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
@article{CRPHYS_2010__11_9-10_585_0,
     author = {Christopher C. Davis and Quirino Balzano},
     title = {The brain is not a radio receiver for wireless phone signals: {Human} tissue does not demodulate a modulated radiofrequency carrier},
     journal = {Comptes Rendus. Physique},
     pages = {585--591},
     publisher = {Elsevier},
     volume = {11},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crhy.2010.09.002},
     language = {en},
}
TY  - JOUR
AU  - Christopher C. Davis
AU  - Quirino Balzano
TI  - The brain is not a radio receiver for wireless phone signals: Human tissue does not demodulate a modulated radiofrequency carrier
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 585
EP  - 591
VL  - 11
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.09.002
LA  - en
ID  - CRPHYS_2010__11_9-10_585_0
ER  - 
%0 Journal Article
%A Christopher C. Davis
%A Quirino Balzano
%T The brain is not a radio receiver for wireless phone signals: Human tissue does not demodulate a modulated radiofrequency carrier
%J Comptes Rendus. Physique
%D 2010
%P 585-591
%V 11
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2010.09.002
%G en
%F CRPHYS_2010__11_9-10_585_0
Christopher C. Davis; Quirino Balzano. The brain is not a radio receiver for wireless phone signals: Human tissue does not demodulate a modulated radiofrequency carrier. Comptes Rendus. Physique, Volume 11 (2010) no. 9-10, pp. 585-591. doi : 10.1016/j.crhy.2010.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.09.002/

[1] ICNIRP Report 16/2009, Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz), II.6.2, pp. 273–274.

[2] COMAR technical information statement on the IEEE exposure limits for radiofrequency and microwave energy, IEEE Engineering in Medicine and Biology Magazine ( March/April 2005 ), pp. 117-121 (COMAR Reports)

[3] http://www.stralsakerhetsmyndigheten.se (Recent research on EMF and health risks, Sixth Annual Report from the Swedish Radiation Safety Authority Independent Expert Group on Electromagnetic Fields 2009, Report number: 2009:36, ISSN: 2000-0456. Available at)

[4] Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys., Volume 74 (1998), pp. 494-522 (ICNIRP)

[5] IEEE, Standard for Safety Levels with Respect to Human Exposures to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Std. C95.1-2005, Institute of Electrical and Electronic Engineers, Piscataway, NJ, 2006.

[6] E.R. Adair; B.L. Cobb; K.S. Mylacraine; S.A. Kelleher Human exposure at two radio frequencies (450 and 2450 MHz): Similarities and differences in physiological response, Bioelectromagnetics, Volume 4 (1999) no. Suppl., pp. 12-20

[7] S.M. Bawin; L.K. Kaczmarek; W.R. Adey Effects of modulated VHF fields on the central nervous system, Ann. New York Acad. Sci., Volume 247 (1975), pp. 74-81

[8] S.J. Webb; M.E. Stoneham; H. Frohlich Evidence for non-thermal excitation of energy levels in active biological systems, Phys. Lett. A, Volume 63 (1977), pp. 407-408

[9] C.F. Blackman; J.A. Elder; C.M. Weil; S.G. Benane; D.C. Eichinger; D.E. House Induction of calcium ion efflux from brain tissue by radio-frequency radiation: effects of modulation frequency and field strength, Radio Science, Volume 14 (1979) no. 6S, pp. 93-98

[10] A.F. Lawrence; W.R. Adey Nonlinear wave mechanisms of interactions between excitable tissue and electromagnetic waves, Neurol. Research, Volume 4 (1982), pp. 115-153

[11] C.V. Byus; R.L. Lundak; R. Fletcher; W.R. Adey Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields, Bioelectromagnetics, Volume 5 (1984), pp. 34-51

[12] J. Walleczek; T.F. Budinger Pulsed magnetic field effects on calcium signaling in lymphocytes: dependence on cell status and field intensity, FEBS Lett., Volume 314 (1992), pp. 351-355

[13] W. Ross Adey Biological effects of electromagnetic fields, Journal of Cellular Biochemistry, Volume 51 (1993), pp. 410-416

[14] A.R. Sheppard; M.L. Swicord; Q. Balzano Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes, Health Phys., Volume 93 (2008), pp. 365-396

[15] R.K. Adair; R.D. Astumian; J.C. Weaver Detection of weak electric fields by sharks, rays, and skates, Chaos, Volume 8 (1998), pp. 576-587

[16] J.L. Gould Animal navigation: the evolution of magnetic orientation, Current Biology, Volume 18 (2008), p. R482-R484

[17] R.C. Beason; N. Dussourd; N.M.E. Deutschlander Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird, J. Exp. Biol., Volume 198 (1995), pp. 141-146

[18] R. Blakemore Magnetotactic bacteria, Ann. Rev. Microbiol., Volume 36 (1982), pp. 217-238

[19] M.M. Walker; M.E. Bitterman Honeybees can be trained to respond to very small changes in geomagnetic field intensity, J. Exp. Biol., Volume 145 (1989), pp. 489-494

[20] J.L. Kirschvink; S. Padmanabha; C.K. Boyce; J. Oglesby Measurement of the threshold sensitivity of honeybees to weak, extremely low frequency magnetic fields, J. Exp. Biol., Volume 200 (1997), pp. 1363-1368

[21] R. Wiltschko; W. Wiltschko Magnetoreception, Bioessays, Volume 28 (2006), pp. 157-168

[22] T. Ritz; R. Wiltschko; P.J. Hore; C.T. Rodgers; K. Stapput; P. Thalau; C.R. Timmel; W. Wiltschko Magnetic compass of birds is based on a molecule with optimal directional sensitivity, Biophys. J., Volume 96 (2009), pp. 3451-3457

[23] James Weaver http://www.cost281.org/docs/Washington%20Seminar%20report.pdf (MIT), in discussions about “Mechanisms for Interactions of Radiofrequency Energy with Biological Systems: Principal Conclusions from a Mobile Manufacturers Forum Seminar”, Washington, DC, July 23, 2001. Available at

[24] E.H. Grant; R.J. Sheppard; G.P. South Dielectric Behavior of Biological Molecules in Solution, Oxford University Press, 1978

[25] J. Wiart; C. Dale; A.V. Bosisio; A. Le Cornec Analysis of the influence of the power control and discontinuous transmission on RF exposure with GSM mobile phones, IEEE Trans. EMC, Volume 42 (2000), pp. 376-385

[26] I. Deltour; C. Johansen; A. Auvinen; M. Feychting; L. Klaeboe; J. Schüz Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974–2003, J. Natl. Cancer Inst., Volume 101 (2009), pp. 1721-1724

[27] A. Hirata; M. Morita; T. Shiozawa Temperature increase in the human head due to a dipole antenna at microwave frequencies, IEEE Trans. Electromag. Compat., Volume 5 (2003), pp. 109-116

[28] J. Wang, T. Joukou, O. Fujiwara, Dependence of antenna output power of temperature increase in human head for portable telephones, in: Proc. Asia Pacific Microwave Conf., vol. 2, 1999, pp. 481–484.

[29] G.M.J. Van Leeuwen; J.J.W. Lagendijk; B.J.A.M. Van Leersum; A.P.M. Zwamborn; S.N. Hornsleth; A.N.T. Kotte Calculation of change in brain temperatures due to exposure to a mobile phone, Phys. Med. Biol., Volume 44 (1999), pp. 2367-2379

[30] P. Bernardi; M. Cavagnaro; S. Pisa; E. Piuzzi Specific absorption rate and temperature increases in the head of a cellular-phone user, IEEE Trans. Microwave Theory Tech., Volume 48 (2000), pp. 1118-1126

[31] FCC OET Bulletin 65, Revised Supplement C “Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields”, June 2001.

[32] P.A. Mackowiak; S.S. Wasserman; M.M. Levine A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich, JAMA, Volume 268 (1992), pp. 1578-1580

[33] J.E. Moulder; L.S. Erdreich; R.S. Malyapa; J. Merritt; W.F. Pickard; Vijayalaxmi Cell phones and cancer: what is the evidence for a connection?, Radiation Research, Volume 151 (1999), pp. 513-531

[34] L.J. Challis Mechanisms for interaction between RF fields and biological tissue, Bioelectromagnetics, Volume 26 (2005) no. Suppl. 7, p. S98-S106

[35] Q. Balzano Proposed test for detection of nonlinear responses in biological preparations exposed to RF energy, Bioelectromagnetics, Volume 23 (2002), pp. 278-287

[36] Y.H. Barsoum; W.F. Pickard Radio-frequency rectification in electrogenic and nonelectrogenic cells of Chara and Nitella, J. Membr. Biol., Volume 65 (1982), pp. 81-87

[37] S. Ramachandran; R.H. Blick; D.W. van der Welde Radio frequency rectification on membrane bound pores, Nanotechnology, Volume 21 (2010), p. 075201

[38] Q. Balzano; V. Hodzic; R.W. Gammon; C.C. Davis A doubly resonant cavity for detection of RF demodulation by living cells, Bioelectromagnetics, Volume 29 (2008), pp. 81-91

[39] C. Kowalczuk; G. Yarwood; R. Blackwell; M. Priestner; Z. Sienkiewicz; S. Bouffler; I. Ahmed; R. Abd-Alhameed; P. Excell; V. Hodzic; C. Davis; R. Gammon; Q. Balzano Absence of nonlinear responses in cells and tissues exposed to RF energy at mobile phone frequencies using a doubly resonant cavity, Bioelectromagnetics, Volume 31 (2010) no. 7, pp. 556-565

Cité par Sources :

This paper was originally presented at the 2èmes Rencontres Scientifiques de la Fondation Santé et Radiofréquences on October 21, 2009.

Commentaires - Politique


Ces articles pourraient vous intéresser

Sense and sensibility in the context of radiofrequency electromagnetic field exposure

Martin Röösli; Evelyn Mohler; Patrizia Frei

C. R. Phys (2010)


Effets des radiofréquences sur le système nerveux central chez lʼhomme : EEG, sommeil, cognition, vascularisation

Rania Ghosn; Anne-Sophie Villégier; Brahim Selmaoui; ...

C. R. Phys (2013)