Pregnant rats were daily whole-body exposed or sham-exposed to a Wi-Fi signal in a free-running reverberation chamber at 0, 0.08, 0.4, and 4 W/kg for 2 h during the last 2 weeks of gestation (5 days/week). Following this in utero exposure, the pups were divided into two groups and 1 group continued exposure for 5 weeks after birth. Several brain areas were examined for gliosis and apoptotic cells. Comparison among sham and exposed groups revealed no significant differences, suggesting that in utero and post-natal exposure to Wi-Fi did not damage the brains of the young rats.
Des rates gestantes ont été exposées corps-entier à un signal Wi-Fi, sans contrainte de mobilité, dans une chambre réverbérante à des niveaux d'exposition de 0 ; 0,08 ; 0,4 et 4 W/kg et ce, durant les deux dernières semaines de gestation. Suite à cette exposition in utero quotidienne (2 h, 5 jours/semaine), chaque portée obtenue a été divisée en deux groupes dont un, poursuivant l'exposition jusqu'à 5 semaines après la naissance. La détection de gliose et de cellules apoptotiques a été réalisée au niveau de différentes régions du cerveau des jeunes rats. Aucune altération n'a été observée suite à l'exposition Wi-Fi in utero et post-natale.
Mot clés : Signal Wi-Fi, Jeunes animaux, Cerveau, Exposition in utero, Apoptose, Gliose
Saliha Aït-Aïssa 1, 2; Bernard Billaudel 1; Florence Poulletier De Gannes 1, 2; Annabelle Hurtier 1; Emmanuelle Haro 1; Murielle Taxile 1; Gilles Ruffie 3; Axel Athane 2; Bernard Veyret 1, 2; Isabelle Lagroye 1, 2
@article{CRPHYS_2010__11_9-10_592_0, author = {Saliha A{\"\i}t-A{\"\i}ssa and Bernard Billaudel and Florence Poulletier De Gannes and Annabelle Hurtier and Emmanuelle Haro and Murielle Taxile and Gilles Ruffie and Axel Athane and Bernard Veyret and Isabelle Lagroye}, title = {In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a {Wi-Fi} signal}, journal = {Comptes Rendus. Physique}, pages = {592--601}, publisher = {Elsevier}, volume = {11}, number = {9-10}, year = {2010}, doi = {10.1016/j.crhy.2010.10.005}, language = {en}, }
TY - JOUR AU - Saliha Aït-Aïssa AU - Bernard Billaudel AU - Florence Poulletier De Gannes AU - Annabelle Hurtier AU - Emmanuelle Haro AU - Murielle Taxile AU - Gilles Ruffie AU - Axel Athane AU - Bernard Veyret AU - Isabelle Lagroye TI - In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal JO - Comptes Rendus. Physique PY - 2010 SP - 592 EP - 601 VL - 11 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2010.10.005 LA - en ID - CRPHYS_2010__11_9-10_592_0 ER -
%0 Journal Article %A Saliha Aït-Aïssa %A Bernard Billaudel %A Florence Poulletier De Gannes %A Annabelle Hurtier %A Emmanuelle Haro %A Murielle Taxile %A Gilles Ruffie %A Axel Athane %A Bernard Veyret %A Isabelle Lagroye %T In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal %J Comptes Rendus. Physique %D 2010 %P 592-601 %V 11 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2010.10.005 %G en %F CRPHYS_2010__11_9-10_592_0
Saliha Aït-Aïssa; Bernard Billaudel; Florence Poulletier De Gannes; Annabelle Hurtier; Emmanuelle Haro; Murielle Taxile; Gilles Ruffie; Axel Athane; Bernard Veyret; Isabelle Lagroye. In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal. Comptes Rendus. Physique, Volume 11 (2010) no. 9-10, pp. 592-601. doi : 10.1016/j.crhy.2010.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.10.005/
[1] Animal models in neurodegenerative diseases, Neuropsychiatric Disorder: An Integrative Approach, 2007, pp. 87-90
[2] Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines?, Neurotoxicology, Volume 22 (2001), pp. 607-618
[3] et al. The reaction of astrocytes and neurons in the hippocampus of adult rats during chronic ethanol treatment and correlations to behavioral impairments, Alcohol, Volume 14 (1997), pp. 445-454
[4] Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity, Expert Opin. Drug Safety, Volume 4 (2005), pp. 433-442
[5] Focus on molecules: glial fibrillary acidic protein (GFAP), Exp. Eye Res., Volume 84 (2007), pp. 381-382
[6] et al. Abnormal reactivity of Müller cells after retinal detachment in mice deficient in GFAP and vimentin, Invest. Ophthalmol. Vis. Sci., Volume 49 (2008), pp. 3659-3665
[7] et al. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease, Neurobiol. Aging, Volume 25 (2004), pp. 663-674
[8] et al. GFAP mutations in Alexander disease, Int. J. Dev. Neurosci., Volume 20 (2002), pp. 259-268
[9] Astrocyte intermediate filaments in CNS pathologies and regeneration, J. Pathol., Volume 204 (2004), pp. 428-437
[10] et al. Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain, Neuroscience, Volume 81 (1997), pp. 627-639
[11] et al. Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain, Neurobiol. Dis., Volume 17 (2004), pp. 445-454
[12] Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation, Electromagn. Biol. Med., Volume 25 (2006), pp. 61-70
[13] Cell death during development of the nervous system, Annu. Rev. Neurosci., Volume 14 (1991), pp. 453-501
[14] et al. Environmental toxicity, oxidative stress and apoptosis: ménage à trois, Mutat. Res., Volume 674 (2009), pp. 3-22
[15] Apoptosis: a key in neurodegenerative disorders, Curr. Neurovasc. Res., Volume 1 (2004), pp. 355-371
[16] et al. Neuronal apoptosis in neurodegeneration, Antioxid. Redox Signal, Volume 9 (2007), pp. 1059-1096
[17] Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling, J. Cell Mol. Med., Volume 12 (2008), pp. 2263-2280
[18] et al. Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation, Radiat. Res., Volume 161 (2004), pp. 193-200
[19] et al. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field, Bioelectromagnetics, Volume 27 (2006), pp. 164-171
[20] et al. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells, J. Cell Physiol., Volume 213 (2007), pp. 759-767
[21] et al. Radiofrequency radiation does not significantly affect ornithine decarboxylase activity, proliferation, or caspase-3 activity of fibroblasts in different physiological conditions, Int. J. Radiat. Biol., Volume 84 (2008), pp. 727-733
[22] et al. 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells, J. Toxicol. Environ. Health A, Volume 72 (2009), pp. 727-732
[23] et al. Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain, Exp. Mol. Med., Volume 40 (2008), pp. 294-303
[24] et al. Whole-body exposure of radiation emitted from 900 MHz mobile phones does not seem to affect the levels of anti-apoptotic bcl-2 protein, Electromagn. Biol. Med., Volume 27 (2008), pp. 65-72
[25] et al. Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain, Electromagn. Biol. Med., Volume 28 (2009), pp. 342-354
[26] et al. No apoptosis is induced in rat cortical neurons exposed to GSM phone fields, Bioelectromagnetics, Volume 28 (2007), pp. 115-121
[27] et al. Microwave exposure of neuronal cells in vitro: study of apoptosis, Int. J. Radiat. Biol., Volume 82 (2006), pp. 267-275
[28] et al. Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants, Radiat. Res., Volume 170 (2008), pp. 235-243
[29] et al. Exposure to low level GSM 935 MHz radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells, Radiat. Prot. Dosimetry, Volume 131 (2008), pp. 287-296
[30] et al. Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons, Radiat. Res., Volume 169 (2008), pp. 38-45
[31] et al. Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay, Toxicology, Volume 235 (2007), pp. 167-175
[32] et al. The study of retinal ganglion cell apoptosis induced by different intensities of microwave irradiation, Ophthalmologica, Volume 222 (2008), pp. 6-10
[33] et al. Whole-body newborn and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz, Phys. Med. Biol., Volume 55 (2010), pp. 1619-1630
[34] Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies, Phys. Med. Biol., Volume 46 (2001) no. 6, pp. 1617-1629
[35] S. Aït-Aïssa, et al., In-utero and early-life exposure of rats to a Wi-Fi signal: gestational outcome and screening of immune markers in sera, Bioelectromagnetics, submitted for publication (manuscript number BEM-10-0132).
[36] Effects of early environment on pyramidal neuron morphology in field CA1 of the Guinea-pig, Neuroscience, Volume 116 (2003), pp. 715-732
[37] et al. Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures, Glia, Volume 15 (1995) no. 2, pp. 157-166
[38] Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin, Develop. Brain Res., Volume 15 (1984) no. 2, pp. 201-209
[39] Intrauterine infection/inflammation during pregnancy and offspring brain damages: possible mechanisms involved, Reprod. Biol. Endocrinol., Volume 2 (2004), p. 17
[40] et al. Altered glial fibrillary acidic protein immunoreactivity in rat brain following chronic hypoxia, Neuroscience, Volume 40 (1991), pp. 353-361
[41] Developmental neurotoxicity. The Laboratory Rat. The Handbook of Experimental Animals, Academic Press, 2000 (756 pages)
[42] Effects of ethanol on glial cell proliferation: relevance to the fetal alcohol syndrome, Fetal and Pediatric Pathology, Volume 18 (1998), pp. 433-443
[43] et al. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response, Exp. Gerontol., Volume 43 (2008), pp. 307-316
[44] Infantile familial encephalopathy with cerebral calcifications and leukodystrophy, Neuropediatrics, Volume 19 (1988), pp. 72-79
[45] Stress proteins and glial functions: possible therapeutic targets for neurodegenerative disorders, Pharmacol. Ther., Volume 97 (2003), pp. 35-53
[46] et al. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain, Biomedicine & Pharmacotherapy, Volume 62 (2008), pp. 273-281
[47] Effect of an acute 900 MHz GSM exposure on glia in the rat brain: a time-dependent study, Toxicology, Volume 238 (2007), pp. 23-33
[48] et al. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation, Radiat. Res., Volume 166 (2006), pp. 409-421
[49] Critical periods of vulnerability for the developing nervous system: evidence from humans and animal, Models Environ. Health Perspect. Suppl., Volume 108 (2000), p. S3
[50] et al. Chronic prenatal ethanol exposure increases apoptosis in the hippocampus of the term fetal Guinea pig, Neurotoxicol. Teratol., Volume 27 (2005), pp. 871-881
[51] Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum, Cerebellum, Volume 7 (2008), pp. 332-347
[52] Effects of prenatal exposure to ethanol on the expression of bcl-2, bax and caspase 3 in the developing rat cerebral cortex and thalamus, Brain Res., Volume 911 (2001), pp. 71-81
[53] et al. Prenatal stress and neonatal rat brain development, Neuroscience, Volume 137 (2006), pp. 145-155
[54] et al. Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration, Radiat. Res., Volume 172 (2009), pp. 359-367
Cited by Sources:
Comments - Policy