Comptes Rendus
Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition
Comptes Rendus. Physique, Volume 12 (2011) no. 2, pp. 123-131.

We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa–Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics.

Cet article compare deux méthodes permettant dʼextraire les contributions cohérentes dans les écoulements turbulents : la méthode CVE (Coherent Vorticity Extraction), basée sur la représentation en ondelettes, et la méthode POD (Proper Orthogonal Decomposition). La première méthode, CVE, décompose lʼécoulement en base dʼondelettes orthogonales puis, grâce au filtrage des coefficients dʼondelettes, permet de séparer lʼécoulement entre une contribution cohérente ayant un comportement statistique non Gaussien et un écoulement résiduel aléatoire ne présentant pas de structures. La seconde méthode, POD, est basée sur la décomposition en valeurs singulières. Elle décompose lʼécoulement dans la base de fonctions qui retient le mieux lʼénergie dʼun ensemble de réalisations de lʼécoulement. Ces deux méthodes sont ensuite utilisées pour analyser les résultats de simulations numériques directes calculant un écoulement turbulent bidimensionnel dʼondes de dérive, gouverné par lʼéquation dʼHasegawa–Wakatani, ceci pour deux cas limites : le régime quasi-hydrodynamique et le régime quasi-adiabatique. Les résultats sont comparés en fonction des taux de compression, des proportions dʼenstrophie et de flux radial retenues, ainsi que du spectre dʼenstrophie (statistique dʼordre deux) et de statistiques dʼordre plus élévé.

Published online:
DOI: 10.1016/j.crhy.2010.12.004
Keywords: Proper orthogonal decomposition, Wavelets, Plasma turbulence, Coherent structures
Mot clés : POD, Ondelettes, Turbulence plasma, Structures cohérentes

Shimpei Futatani 1; Wouter J.T. Bos 2; Diego del-Castillo-Negrete 3; Kai Schneider 4; Sadruddin Benkadda 1; Marie Farge 5

1 International Institute for Fusion Science, CNRS - Université de Provence, case 321, 13397 Marseille cedex 20, France
2 LMFA, CNRS UMR 5509, École Centrale de Lyon - Université de Lyon, 69134 Ecully cedex, France
3 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4 M2P2-CNRS and CMI, Université de Provence, 38 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France
5 LMD-CNRS, École Normale Supérieure, 45, rue dʼUlm, 75230 Paris cedex 05, France
@article{CRPHYS_2011__12_2_123_0,
     author = {Shimpei Futatani and Wouter J.T. Bos and Diego del-Castillo-Negrete and Kai Schneider and Sadruddin Benkadda and Marie Farge},
     title = {Coherent vorticity extraction in resistive drift-wave turbulence: {Comparison} of orthogonal wavelets versus proper orthogonal decomposition},
     journal = {Comptes Rendus. Physique},
     pages = {123--131},
     publisher = {Elsevier},
     volume = {12},
     number = {2},
     year = {2011},
     doi = {10.1016/j.crhy.2010.12.004},
     language = {en},
}
TY  - JOUR
AU  - Shimpei Futatani
AU  - Wouter J.T. Bos
AU  - Diego del-Castillo-Negrete
AU  - Kai Schneider
AU  - Sadruddin Benkadda
AU  - Marie Farge
TI  - Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 123
EP  - 131
VL  - 12
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.12.004
LA  - en
ID  - CRPHYS_2011__12_2_123_0
ER  - 
%0 Journal Article
%A Shimpei Futatani
%A Wouter J.T. Bos
%A Diego del-Castillo-Negrete
%A Kai Schneider
%A Sadruddin Benkadda
%A Marie Farge
%T Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition
%J Comptes Rendus. Physique
%D 2011
%P 123-131
%V 12
%N 2
%I Elsevier
%R 10.1016/j.crhy.2010.12.004
%G en
%F CRPHYS_2011__12_2_123_0
Shimpei Futatani; Wouter J.T. Bos; Diego del-Castillo-Negrete; Kai Schneider; Sadruddin Benkadda; Marie Farge. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition. Comptes Rendus. Physique, Volume 12 (2011) no. 2, pp. 123-131. doi : 10.1016/j.crhy.2010.12.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.12.004/

[1] P. Holmes, J.L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, 1996.

[2] J.L. Lumley Transition and Turbulence (R.E. Meyer, ed.), Academic Press, New York, 1981, pp. 215-242

[3] N. Aubry; R. Lima; M. Rahibe Chaos, 13 (2003), p. 541

[4] S. Futatani; S. Benkadda; D. del-Castillo-Negrete Phys. Plasmas, 16 (2009), p. 042506

[5] M. Farge Annu. Rev. Fluid Mech., 24 (1992), p. 395

[6] M. Farge; K. Schneider; N. Kevlahan Phys. Fluids, 11 (1999), p. 2187

[7] M. Farge; G. Pellegrino; K. Schneider Phys. Rev. Lett., 87 (2001), p. 054501

[8] N. Okamoto; K. Yoshimatsu; K. Schneider; M. Farge; Y. Kaneda Phys. Fluids, 19 (2007) no. 11, p. 11519 (1–13)

[9] M. Farge; E. Goirand; Y. Meyer; F. Pascal; M.V. Wickerhauser Fluid Dyn. Res., 10 (1992), pp. 229-250

[10] D. del-Castillo-Negrete; S.P. Hirshman; D.A. Sponga; E.F. DʼAzevedo J. Comput. Phys., 222 (2007), p. 265

[11] D. del-Castillo-Negrete; D.A. Sponga; S.P. Hirshman Phys. Plasmas, 15 (2008), p. 092308

[12] M. Farge; K. Schneider; G. Pellegrino; A.A. Wray; R.S. Rogallo Phys. Fluids, 15 (2003) no. 10, pp. 2886-2896

[13] M. Farge; K. Schneider; P. Devynck Phys. Plasmas, 13 (2006), p. 042304

[14] W.J.T. Bos; S. Futatani; S. Benkadda; M. Farge; K. Schneider Phys. Plasmas, 15 (2008), p. 072305

[15] S. Gassama; E. Sonnendrücker; K. Schneider; M. Farge; M. Domingues ESAIM Proc., 16 (2006), pp. 195-210

[16] R. Nguyen van yen; D. del-Castillo-Negrete; K. Schneider; M. Farge; G. Chen J. Comput. Phys., 229 (2010), p. 2821

[17] S. Benkadda; T. Dudok de Wit; A. Verga; A. Sen; ASDEX team; X. Garbet Phys. Rev. Lett., 73 (1994), p. 3403

[18] A.J. Gámez; C.S. Zhou; A. Timmermann; J. Kurthst Nonlinear Process. Geophys., 11 (2004), p. 393

[19] A. Hasegawa; M. Wakatani Phys. Rev. Lett., 50 (1983), p. 682

[20] A. Hasegawa; K. Mima Phys. Rev. Lett., 39 (1977), p. 205

[21] G.H. Golub; D.F. Van Loan Matrix Computations, The John Hopkins University Press, London, 1996

[22] S. Mallat A Wavelet Tour of Signal Processing, Academic, New York, 1998

[23] G. Joyce; D. Montgomery J. Plasma Phys., 19 (1973), p. 107

Cited by Sources:

Comments - Policy