Comptes Rendus
Observation and theoretical modeling of electron scale solar wind turbulence
Comptes Rendus. Physique, Volume 12 (2011) no. 2, pp. 132-140.

Turbulence at MagnetoHydroDynamics (MHD) scales in the solar wind has been studied for more than three decades, using data analysis, theoretical and numerical modeling. However, smaller scales have not been explored until very recently. Here, we review recent results on the first observation of cascade and dissipation of the solar wind turbulence at the electron scales. Thanks to the high resolution magnetic and electric field data of the Cluster spacecraft, we computed the spectra of turbulence up to 100 Hz (in the spacecraft reference frame) and found evidence of energy dissipation around the Doppler-shifted electron gyroscale fρe. Before its dissipation, the energy is shown to undergo two cascades: a Kolmogorov-like cascade with a scaling f1.6 above the proton gyroscale, and a new f2.3 cascade at the sub-proton and electron gyroscales. Above fρe the spectrum has a steeper power law f4.1 down to the noise level of the instrument. Solving numerically the linear Maxwell–Vlasov equations combined with recent theoretical predictions of the Gyro-Kinetic theory, we show that the present results are consistent with a scenario of a quasi-two-dimensional cascade into Kinetic Alfvén modes (KAW). New analyses of other data sets, where the Cluster separation (of about 200 km) allowed us to explore the sub-proton scales using the k-filtering technique, and to confirm the 2D nature of the turbulence at those scales.

La turbulence aux échelles magnétohydrodynamique (MHD) dans le vent solaire a été étudiée pendant plus de trois décennies, au moyen dʼanalyses de données, de modélisations théoriques et de simulations numériques. Cependant, les plus petites échelles nʼont pas été explorées jusquʼà très récemment. Ici, nous passons en revue les résultats récents sur la cascade et la dissipation de la turbulence du vent solaire à lʼéchelle des électrons. Grâce aux données à haute résolution temporelle des champs magnétique et électrique des satellites Cluster, nous avons obtenu les spectres de la turbulence jusquʼà 100 Hz (dans le référentiel du satellite) et avons mis en évidence une zone de dissipation dʼénergie autour de la fréquence fρe correspondant à lʼéchelle de giration des électrons. Avant sa dissipation, lʼénergie subit deux cascades : une cascade classique à la Kolmogorov avec une loi dʼéchelle f1.6 en dessus de lʼéchelle de giration des protons, et une nouvelle cascade en f2.3 aux échelles sub-protoniques jusquʼà lʼ échelle électronique. Au-dessus fρe le spectre a une loi de puissance plus pentue en f4.1 jusquʼà la limite dʼobservation donnée par le niveau de bruit de lʼinstrument. La résolution numérique des équations linéaires de Maxwell–Vlasov combinées aux récentes prédictions de la théorique Gyrocinétique, montrent que ces résultats sont conformes à un scénario de cascade quasi-2D suivant le mode dʼAlfvén cinétique (KAW). Une analyse plus récente dʼun autre jeu de données, où les séparations de cluster étaient de 200 km, nous a permis dʼexplorer les échelles sous-proton en utilisant la technique k-filtering, et de confirmer la nature quasi-2D de la turbulence à ces échelles-là.

Published online:
DOI: 10.1016/j.crhy.2010.11.008
Keywords: Solar wind, Turbulence, Dissipation, Cluster, Heating, k-Filtering
Mot clés : Vent solaire, Turbulence, Dissipation, Cluster, Chauffage

Fouad Sahraoui 1; Melvyn L. Goldstein 2; K. Abdul-Kader 1; Gérard Belmont 1; Laurence Rezeau 1, 3; Patrick Robert 1; Patrick Canu 1

1 Laboratoire de Physique des Plasmas, CNRS-École Polytechnique, Observatoire de Saint-Maur, 4, avenue de Nepture, 94107 Saint-Maur-des-Fossés, France
2 NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771, USA
3 Université Pierre-et-Marie-Curie, 4, place Jussieu, 75005 Paris, France
@article{CRPHYS_2011__12_2_132_0,
     author = {Fouad Sahraoui and Melvyn L. Goldstein and K. Abdul-Kader and G\'erard Belmont and Laurence Rezeau and Patrick Robert and Patrick Canu},
     title = {Observation and theoretical modeling of electron scale solar wind turbulence},
     journal = {Comptes Rendus. Physique},
     pages = {132--140},
     publisher = {Elsevier},
     volume = {12},
     number = {2},
     year = {2011},
     doi = {10.1016/j.crhy.2010.11.008},
     language = {en},
}
TY  - JOUR
AU  - Fouad Sahraoui
AU  - Melvyn L. Goldstein
AU  - K. Abdul-Kader
AU  - Gérard Belmont
AU  - Laurence Rezeau
AU  - Patrick Robert
AU  - Patrick Canu
TI  - Observation and theoretical modeling of electron scale solar wind turbulence
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 132
EP  - 140
VL  - 12
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.11.008
LA  - en
ID  - CRPHYS_2011__12_2_132_0
ER  - 
%0 Journal Article
%A Fouad Sahraoui
%A Melvyn L. Goldstein
%A K. Abdul-Kader
%A Gérard Belmont
%A Laurence Rezeau
%A Patrick Robert
%A Patrick Canu
%T Observation and theoretical modeling of electron scale solar wind turbulence
%J Comptes Rendus. Physique
%D 2011
%P 132-140
%V 12
%N 2
%I Elsevier
%R 10.1016/j.crhy.2010.11.008
%G en
%F CRPHYS_2011__12_2_132_0
Fouad Sahraoui; Melvyn L. Goldstein; K. Abdul-Kader; Gérard Belmont; Laurence Rezeau; Patrick Robert; Patrick Canu. Observation and theoretical modeling of electron scale solar wind turbulence. Comptes Rendus. Physique, Volume 12 (2011) no. 2, pp. 132-140. doi : 10.1016/j.crhy.2010.11.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.11.008/

[1] P. Escoubet et al. The Cluster and Phoenix Missions, Kluwer Academic Publishers, Belgium, 1997

[2] W.H. Matthaeus; M.L. Goldstein Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res., Volume 87 (1982), pp. 6011-6028

[3] Y. Narita; K.H. Glassmeier; F. Sahraoui; M.L. Goldstein Wave-vector dependence of magnetic-turbulence spectra in the solar wind, Phys. Rev. Lett., Volume 104 (2010), p. 171101

[4] F. Sahraoui; G. Belmont; M.L. Goldstein; L. Rezeau Limitations of multispacecraft data techniques in measuring wave number spectra of space plasma turbulence, J. Geophys. Res., Volume 115 (2010), p. A04206 | DOI

[5] M.L. Goldstein; M.D. Roberts; C. Fitch Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence, J. Geophys. Res., Volume 99 (1994), pp. 11519-11538

[6] R.J. Leamon; C.W. Smith; N.F. Ness; W.H. Matthaeus; H.K. Wong Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, J. Geophys. Res., Volume 103 (1998), pp. 4775-4787

[7] R.J. Leamon; W.H. Matthaeus; C.W. Smith; G.P. Zank; D.J. Mullan MHD-driven kinetic dissipation in the solar wind and corona, Astrophys. J., Volume 537 (2000), p. 1054

[8] O. Alexandrova; V. Carbone; P. Veltri; L. Sorriso-Valvo Small-scale energy cascade of the solar wind turbulence, Astrophys. J., Volume 674 (2008), p. 1153

[9] O. Stawicki; S.P. Gary; H. Li Solar wind magnetic fluctuation spectra: Dispersion versus damping, J. Geophys. Res., Volume 106 (2001), pp. 8273-8281

[10] S.D. Bale; P.J. Kellogg; F.S. Mozer; T.S. Horbury; H. Rème Observations of turbulence generated by magnetic reconnection, Phys. Rev. Lett., Volume 94 (2005), p. 215002

[11] D. Biskamp; E. Schwarz; A. Zeiler; A. Celani; J.F. Drake Electron magnetohydrodynamic turbulence, Phys. Plasmas, Volume 6 (1999), p. 751

[12] V. Krishan; S.M. Mahajan Magnetic fluctuations and Hall magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res., Volume 109 (2004) | DOI

[13] S.P. Gary; S. Saito; H. Li Cascade of whistler turbulence: Particle-in-ell simulations, Geophys. Res. Lett., Volume 35 (2008), p. L02104 | DOI

[14] S. Galtier von Kármán–Howarth equations for Hall magnetohydrodynamic flows, Phys. Rev. E, Volume 77 (2008), p. 015302

[15] F. Sahraoui; S. Galtier; G. Belmont On waves in incompressible Hall magnetohydrodynamics, J. Plasmas Phys., Volume 73 (2007), pp. 723-730

[16] A.A. Schekochihin; S.C. Cowley; W. Dorland; G.W. Hammett; G.G. Howes; E. Quataert; T. Tatsuno Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J. Suppl., Volume 182 (2009), pp. 310-377

[17] G.G. Howes; W. Dorland; S.C. Cowley; G.W. Hammett; E. Quataert; A.A. Schekochihin; T. Tatsuno Kinetic simulations of magnetized turbulence in astrophysical plasmas, Phys. Rev. Lett., Volume 100 (2008), p. 065004

[18] A. Balogh; C.M. Carr; M.H. Acuna; M.W. Dunlop; T.J. Beek; P. Brown; K.-H. Fornacon; E. Georgescu; K.-H. Glassmeier; J. Harris; G. Musmann; T. Oddy; K. Schwingenschuh The cluster magnetic field investigation: overview of in-flight performance and initial results, Ann. Geophys., Volume 19 (2001), pp. 1207-1217

[19] N. Cornilleau-Wehrlin; G. Chanteur; S. Perraut; L. Rezeau; P. Robert; A. Roux; C. de Villedary; P. Canu; M. Maksimovic; Y. de Conchy; D. Hubert; C. Lacombe; F. Lefeuvre; M. Parrot; J.L. Pinçon; P.M.E. Dçcrçau; C.C. Harvey; Ph. Louarn; O. Santolik; H.St.C. Alleyne; M. Roth; T. Chust; O. Le Contel; STAFF team First results obtained by the Cluster STAFF experiment, Ann. Geophys., Volume 21 (2003), pp. 437-456

[20] G. Gustafsson; M. André; T. Carozzi; A.I. Eriksson; C.-G. Fälthammar; R. Grard; G. Holmgren; J.A. Holtet; N. Ivchenko; T. Karlsson; Y. Khotyaintsev; S. Klimov; H. Laakso; P.-A. Lindqvist; B. Lybekk; G. Marklund; F. Mozer; K. Mursula; A. Pedersen; B. Popielawska; S. Savin; K. Stasiewicz; P. Tanskanen; A. Vaivads; J.-E. Wahlund First results of electric field and density observations by Cluster EFW based on initial months of operation, Ann. Geophys., Volume 19 (2001), pp. 1241-1258

[21] R.J. Leamon; C.W. Smith; N.F. Ness Dissipation range dynamics: Kinetic Alfvén waves and the importance of βe, J. Geophys. Res., Volume 104 (1999), p. 22331

[22] F. Sahraoui; M.L. Goldstein; G. Belmont; A. Roux; L. Rezeau; P. Canu; P. Robert; N. Cornilleau-Wehrlin; O. Lecontel; T.D. De Wit; J.L. Pincon; K. Kiyani Multi-spacecraft investigation of space turbulence: Lessons from Cluster and input to the Cross-Scale mission, Planet. Space Sci. (2010) | DOI

[23] O. Alexandrova; J. Saur; C. Lacombe; A. Mangeney; J. Mitchell; S.J. Schwartz; P. Robert Universality of solar-wind turbulent spectrum from MHD to electron scales, Phys. Rev. Lett., Volume 103 (2009), p. 165003

[24] W.H. Matthaeus; M.L. Goldstein; D.A. Roberts Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind, J. Geophys. Res., Volume 95 (1990), pp. 20673-20683

[25] B. Grison; F. Sahraoui; B. Lavraud; T. Chust; N. Cornilleau-Wehrlin; H. Rème; A. Balogh; M. André Wave particle interactions in the high-altitude polar cusp: a Cluster case study, Ann. Geophys., Volume 23 (2005), pp. 3699-3713

[26] F. Sahraoui; G. Belmont; L. Rezeau; N. Cornilleau-Wehrlin; J.L. Pinçon; A. Balogh Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft, Phys. Rev. Lett., Volume 96 (2006), p. 075002

[27] K.T. Osman; T.S. Horbury Multispacecraft measurement of anisotropic correlation functions in solar wind turbulence, Astrophys. J., Volume 654 (2007), p. L103

[28] J.L. Pinçon; F. Lefeuvre Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space, J. Geophys. Res., Volume 96 (1991), pp. 1789-1802

[29] F. Sahraoui; J.L. Pinçon; G. Belmont; L. Rezeau; N. Cornilleau-Wehrlin; P. Robert; L. Mellul; J.M. Bosqued; A. Balogh; P. Canu; G. Chanteur ULF wave identification in the magnetosheath: The k-filtering technique applied to Cluster II data, J. Geophys. Res., Volume 108 (2003), pp. 1335-1354

[30] F. Sahraoui; G. Belmont; J.L. Pinçon; L. Rezeau; A. Balogh; P. Robert; N. Cornilleau-Wehrlin Magnetic turbulent spectra in the magnetosheath: new insights, Ann. Geophys., Volume 22 (2004), pp. 2283-2288

[31] F. Sahraoui; M.L. Goldstein; P. Robert; Y.V. Khotyaintsev Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale, Phys. Rev. Lett., Volume 102 (2009), p. 231102

Cited by Sources:

Comments - Policy