[Conception et distribution dʼantennes pour une super station LOFAR à Nançay]
LʼObservatoire de Nançay et des laboratoires associés développent un concept de “Super Station” afin dʼétendre les capacités de lʼactuelle station LOFAR installée à Nançay. La Super Station LOFAR (LSS) augmentera le nombre de longues bases interférométriques sensibles, fournira de nouvelles bases courtes, formera un cœur alternatif à LOFAR et constituera un nouvel instrument autonome. Il opèrera dans la bande basse de LOFAR (15–80 MHz) et étendra cette bande à plus basses fréquences. Trois études clefs sont décrites ici : (i) La conception dʼantennes spécifiques, et leur distribution ; (ii) à petite échelle (dans un mini-réseau phasé analogique) ; et (iii) à grande échelle (réseau LSS).
The Nançay radio astronomy observatory and associated laboratories are developing the concept of a “Super Station” for extending the LOFAR station now installed and operational in Nançay. The LOFAR Super Station (LSS) will increase the number of high sensitivity long baselines, provide short baselines, act as an alternate core, and be a large standalone instrument. It will operate in the low frequency band of LOFAR (15–80 MHz) and extend this range to lower frequencies. Three key developments for the LSS are described here: (i) the design of a specific antenna, and the distribution of such antennas; (ii) at small-scale (analog-phased mini-array); and (iii) at large-scale (the whole LSS).
Mots-clés : Antennes, Réseaux phasés, Interféromètre, Configurations, LOFAR
Julien N. Girard 1 ; Philippe Zarka 1 ; Michel Tagger 2 ; Laurent Denis 3 ; Didier Charrier 4 ; Alexander A. Konovalenko 5 ; Frédéric Boone 6
@article{CRPHYS_2012__13_1_33_0, author = {Julien N. Girard and Philippe Zarka and Michel Tagger and Laurent Denis and Didier Charrier and Alexander A. Konovalenko and Fr\'ed\'eric Boone}, title = {Antenna design and distribution of the {LOFAR} super station}, journal = {Comptes Rendus. Physique}, pages = {33--37}, publisher = {Elsevier}, volume = {13}, number = {1}, year = {2012}, doi = {10.1016/j.crhy.2011.11.004}, language = {en}, }
TY - JOUR AU - Julien N. Girard AU - Philippe Zarka AU - Michel Tagger AU - Laurent Denis AU - Didier Charrier AU - Alexander A. Konovalenko AU - Frédéric Boone TI - Antenna design and distribution of the LOFAR super station JO - Comptes Rendus. Physique PY - 2012 SP - 33 EP - 37 VL - 13 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2011.11.004 LA - en ID - CRPHYS_2012__13_1_33_0 ER -
%0 Journal Article %A Julien N. Girard %A Philippe Zarka %A Michel Tagger %A Laurent Denis %A Didier Charrier %A Alexander A. Konovalenko %A Frédéric Boone %T Antenna design and distribution of the LOFAR super station %J Comptes Rendus. Physique %D 2012 %P 33-37 %V 13 %N 1 %I Elsevier %R 10.1016/j.crhy.2011.11.004 %G en %F CRPHYS_2012__13_1_33_0
Julien N. Girard; Philippe Zarka; Michel Tagger; Laurent Denis; Didier Charrier; Alexander A. Konovalenko; Frédéric Boone. Antenna design and distribution of the LOFAR super station. Comptes Rendus. Physique, The next generation radiotelescopes / Les radiotélescopes du futur, Volume 13 (2012) no. 1, pp. 33-37. doi : 10.1016/j.crhy.2011.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.11.004/
[1] Radioastronomy with LOFAR, C. R. Physique, Volume 13 (2012) no. 1, pp. 23-27 ( in this issue )
[2] The LOFAR telescope: System architecture and signal processing, Proc. IEEE, Volume 97 (2009) no. 8, pp. 1431-1437
[3] J.-M. Grießmeier, P. Zarka, J.N. Girard, Observation of planetary radio emissions using large arrays, Radio Sci., in press, . | DOI
[4] et al. A new high gain, broadband, steerable array to study jovian decametric emission, Icarus, Volume 43 (1980), pp. 399-407
[5] Antenna Theory: Analysis and Design, Wiley, 2005 (pp. 497–522)
[6] S.J. Wijnholds, Fish-Eye Observing with Phased Array Radio Telescopes, Technische Universiteit Delft, PhD Thesis, 2010. ISBN 978-90-9025180-6.
[7] Optimization by simulated annealing, Science New Series, Volume 220 (1983) no. 4598, pp. 671-680
[8] Interferometric array design: Optimizing the locations of the antenna pads, Astron. Astrophys., Volume 377 (2001), pp. 368-376
[9] The MeqTrees software system and its use for third-generation calibration of radio interferometers, Astron. Astrophys., Volume 524 (2010), p. A61
- Towards optimal phased-array tile configurations for large new-generation radio telescopes and their application to NenuFAR, Astronomy Astrophysics, Volume 672 (2023), p. A80 | DOI:10.1051/0004-6361/202243861
- THE UNIVERSE RADIO EMISSION AT DECAMETER WAVELENGTHS (by the materials of a series of works awarded by the State Prize of Ukraine in the field of science and technology in 2018), Radio physics and radio astronomy, Volume 24 (2019) no. 1, p. 3 | DOI:10.15407/rpra24.01.003
- A simple and efficient strategy for solving very large‐scale generalized cable‐trench problems, Networks, Volume 67 (2016) no. 3, p. 199 | DOI:10.1002/net.21614
- , 2015 International Conference on Antenna Theory and Techniques (ICATT) (2015), p. 1 | DOI:10.1109/icatt.2015.7136773
- Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging, Journal of Instrumentation, Volume 10 (2015) no. 08, p. C08013 | DOI:10.1088/1748-0221/10/08/c08013
- Radioastronomy with LOFAR, Comptes Rendus. Physique, Volume 13 (2011) no. 1 | DOI:10.1016/j.crhy.2011.11.002
- LOFAR calibration and wide-field imaging, Comptes Rendus. Physique, Volume 13 (2011) no. 1 | DOI:10.1016/j.crhy.2011.10.006
Cité par 7 documents. Sources : Crossref
Commentaires - Politique