Comptes Rendus
Use of large scale facilities for research in metallurgy
Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods
Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 280-292.

This article deals with the application of several X-ray and neutron diffraction methods to investigate the mechanics of a stress induced martensitic transformation in Cu-based shape memory alloy polycrystals. It puts experimental results obtained by two different research groups on different length scales into context with the mechanics of stress induced martensitic transformation in polycrystalline environment.

Cet article résume une série de travaux où les grands instruments (tels que la diffraction de neutrons et de rayons X du rayonnement synchrotron) ont été appliqués à lʼétude de la transformation martensitique induite par la contrainte, dans le cas dʼalliages à mémoire de forme cuivreux polycristallins. Il résume les travaux de recherche effectués par différentes équipes dont les résultats ont permis dʼidentifier les mécanismes physiques mis en jeu à différentes échelles de la microstructure.

Published online:
DOI: 10.1016/j.crhy.2011.12.003
Keywords: Stress induced martensitic transformation, Cu-based shape memory alloys, Neutron diffraction, X-ray synchrotron, In situ multiscale analysis
Mot clés : Transformation martensitique induite par la contrainte, Alliage à mémoire de forme cuivreux, Diffraction de neutrons, Radiation synchrotron, Analyses in-situ multiéchelle

Benoit Malard 1; Petr Sittner 2; Sophie Berveiller 3; Etienne Patoor 3

1 SIMaP, 1260, rue de la piscine, bâtiment Thermo, 38402 Saint Martin dʼHères, France
2 Institute of Physics of the ASCR, Na Slovance 2, 182 21 Prague, Czech Republic
3 Arts et Métiers ParisTech, LEM3, 4, rue Augustin-Fresnel, 57078 Metz, France
@article{CRPHYS_2012__13_3_280_0,
     author = {Benoit Malard and Petr Sittner and Sophie Berveiller and Etienne Patoor},
     title = {Advances in martensitic transformations in {Cu-based} shape memory alloys achieved by in situ neutron and synchrotron {X-ray} diffraction methods},
     journal = {Comptes Rendus. Physique},
     pages = {280--292},
     publisher = {Elsevier},
     volume = {13},
     number = {3},
     year = {2012},
     doi = {10.1016/j.crhy.2011.12.003},
     language = {en},
}
TY  - JOUR
AU  - Benoit Malard
AU  - Petr Sittner
AU  - Sophie Berveiller
AU  - Etienne Patoor
TI  - Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 280
EP  - 292
VL  - 13
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.12.003
LA  - en
ID  - CRPHYS_2012__13_3_280_0
ER  - 
%0 Journal Article
%A Benoit Malard
%A Petr Sittner
%A Sophie Berveiller
%A Etienne Patoor
%T Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods
%J Comptes Rendus. Physique
%D 2012
%P 280-292
%V 13
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.12.003
%G en
%F CRPHYS_2012__13_3_280_0
Benoit Malard; Petr Sittner; Sophie Berveiller; Etienne Patoor. Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 280-292. doi : 10.1016/j.crhy.2011.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.003/

[1] K. Otsuka; C.M. Wayman Shape Memory Alloys (K. Otsuka; C.M. Wayman, eds.), Cambridge University Press, 1998, p. 27

[2] L. Heller et al. Proceedings Icomat 2008, Santa Fe USA (G.B. Olson; D.S. Lieberman; A. Saxena, eds.), The Minerals, Metals & Materials Society, 2009, pp. 445-452

[3] A.D. Evans, Residual stress characterisation of peened aerospace materials, PhD thesis University of Manchester, 2005.

[4] P.J. Withers Depth capabilities of neutron and synchrotron diffraction strain, J. Appl. Cryst., Volume 37 (2004), pp. 607-612

[5] P. Šittner et al. Proc. of IUTAM 2001, Solid Mechanics and its Applications, vol. 101, Kluwer Academic Publishers, 2001, p. 179

[6] D. Neov et al. In situ high resolution neutron diffraction study of stress induced martensitic transformation in CuAlZnMn shape memory alloy, Mat. Sci. For., Volume 347–349 (2000), pp. 334-339

[7] P. Šittner et al. Stress induced martensitic transformation in CuAlZnMn polycrystal investigated by two in situ neutron diffraction techniques, Mat. Sci. Eng. A, Volume 324 (2002) no. 1–2, pp. 225-234

[8] P. Šittner et al. Load partition in shape memory alloy polycrystals (M. Tokuda; B. Xu, eds.), Proc. of Immm, Mie University Press, Tsu, Japan, 2001, pp. 35-46

[9] P. Šittner, et al. Characterization of stress induced martensitic transformation in shape memory alloys by in situ neutron diffraction techniques, in: J. Redmond, J. Main (Eds.), Proc. of Adaptive Structures and Material Systems, AD-vol. 60, Orlando, FL, 2000, pp. 25–35.

[10] D. Neov, et al., in: XVIII Conference on Applied Crystallography (CAC), Poland, 2000.

[11] S. Berveiller et al. In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy, Acta Materialia, Volume 59 (2011), pp. 3636-3645

[12] B. Malard Caractérisation multiéchelle par diffraction de neutrons et rayonnement synchrotron de la transformation martensitique sous contrainte dans un alliage à mémoire de forme CuAlBe http://pastel.archives-ouvertes.fr/pastel-00004479/en/ Thèse de doctorat de lʼENSAM (CER Metz), 2008

[13] B. Malard et al. Stress determination during the mechanically-induced martensite phase transformation in the superelastic alloy CuAlBe by neutron diffraction, Mat. Sci. Forum, Volume 524 (2006), pp. 905-910

[14] A. Tidu et al. Orthorhombic lattice deformation of CuAlBe shape-memory single crystals under cyclic strain, J. Appl. Cryst., Volume 34 (2001), pp. 722-729

[15] G.K. Kannarpady et al. Phase quantification during pseudoelastic cycling of Cu–13.1Al–4.0Ni (wt.%) single-crystal shape memory alloys using neutron diffraction, Acta Materialia, Volume 56 (2008), pp. 4724-4738

[16] P. Šittner; V. Novák Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, Int. J. Plast., Volume 16 (2000), pp. 1243-1268

[17] V. Novák; P. Šittner Micromechanics modelling of NiTi polycrystalline aggregates transforming under tension and compression stress, Mat. Sci. Eng. A, Volume 378 (2004) no. 1–2, pp. 490-498

[18] P. Šittner et al. In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Mat. Sci. Eng. A, Volume 378 (2004) no. 1–2, pp. 97-104

[19] B. Kaouache Analyse multiéchelles de la transformation martensitique induite par contrainte dans les AMFs. Corrélation contraintes-microstructure http://pastel.archives-ouvertes.fr/docs/00/50/03/95/PDF/These-B-KAOUACHE.pdf Thèse de doctorat de lʼENSAM (CER, Metz), 2006

[20] F. Moreau, Etude par diffraction des rayons X des effets du cyclage pseudoélastique de AMF CuAlBe, Thèse de doctorat de lʼUniversité de Metz, 1998.

[21] I. Noyan; J. Cohen Residual Stress Measurement by Diffraction and Interpretation, Springer Verlag, New York, 1987

[22] C.A. Volkert, et al. in: C. Gundlach, et al. (Eds.), Proc. 25th Risø Int. Symp. Mater. Sci., Risø National Laboratory, Denmark, 2004, pp. 171.

[23] J.R. Schneider et al. High energy synchrotron radiation. A new probe for condensed matter research, J. Phys. IV France, Volume 4 (1994), pp. 415-421

[24] H.F. Poulsen Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, Springer Tracts in Modern Physics, 2005

[25] E.M. Lauridsen et al. Tracking: A method for structural characterization of grains in powders or polycrystals, J. Appl. Cryst., Volume 34 (2001), pp. 744-750

[26] A.A. MacDowell et al. Nucl. Instrum. Meth. Phys. Res. A, 467 (2001), pp. 936-943

[27] N. Tamura et al. High spatial resolution stress measurements using synchrotron based scanning X-ray microdiffraction with white or monochromatic beam, Mat. Sci. Eng. A, Volume 399 (2005) no. 1–2, pp. 92-98

[28] Q.P. Sun et al. Micromechanics constitutive description of thermoelastic martensitic transformations, Adv. Appl. Mech., Volume 31 (1994), pp. 249-298

[29] M. Tokuda et al. Thermomechanical behavior of shape memory alloy under complex loading conditions, Int. J. Plast., Volume 15 (1999), pp. 223-239

[30] R. Vaidyanathan et al. Phase fraction, texture and strain evolution in superelastic NiTi and NiTi±TiC composite investigated by neutron diffraction, Acta Materialia, Volume 47 (1999) no. 12, pp. 3353-3366

[31] S. Qiu et al. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi, Acta Materialia, Volume 59 (2011), pp. 5055-5066

[32] M.L. Young et al. Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading, Acta Materialia, Volume 58 (2010), pp. 2344-2354

[33] A. Stebner et al. Neutron diffraction studies and multivariant simulations of shape memory alloys: Empirical texture development–mechanical response relations of martensitic nickel–titanium, Acta Materialia, Volume 59 (2011), pp. 2841-2849

[34] B. Ye et al. Texture development and strain hysteresis in a NiTi shape-memory alloy during thermal cycling under load, Acta Materialia, Volume 57 (2009), pp. 2403-2417

[35] S.L. Raghunathan et al. In situ observation of individual variant transformations in polycrystalline NiTi, Scripta Materialia, Volume 59 (2008), pp. 1059-1062

[36] M. Hasan et al. X-ray studies of stress-induced phase transformations of superelastic NiTi shape memory alloys under uniaxial load, Mat. Sci. Eng. A, Volume 481–482 (2008), pp. 414-419

[37] B. Malard et al. In-situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires, Acta Materialia, Volume 59 (2011), pp. 1542-1556

Cited by Sources:

Comments - Policy