This article deals with the application of several X-ray and neutron diffraction methods to investigate the mechanics of a stress induced martensitic transformation in Cu-based shape memory alloy polycrystals. It puts experimental results obtained by two different research groups on different length scales into context with the mechanics of stress induced martensitic transformation in polycrystalline environment.
Cet article résume une série de travaux où les grands instruments (tels que la diffraction de neutrons et de rayons X du rayonnement synchrotron) ont été appliqués à lʼétude de la transformation martensitique induite par la contrainte, dans le cas dʼalliages à mémoire de forme cuivreux polycristallins. Il résume les travaux de recherche effectués par différentes équipes dont les résultats ont permis dʼidentifier les mécanismes physiques mis en jeu à différentes échelles de la microstructure.
Mot clés : Transformation martensitique induite par la contrainte, Alliage à mémoire de forme cuivreux, Diffraction de neutrons, Radiation synchrotron, Analyses in-situ multiéchelle
Benoit Malard 1; Petr Sittner 2; Sophie Berveiller 3; Etienne Patoor 3
@article{CRPHYS_2012__13_3_280_0, author = {Benoit Malard and Petr Sittner and Sophie Berveiller and Etienne Patoor}, title = {Advances in martensitic transformations in {Cu-based} shape memory alloys achieved by in situ neutron and synchrotron {X-ray} diffraction methods}, journal = {Comptes Rendus. Physique}, pages = {280--292}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.12.003}, language = {en}, }
TY - JOUR AU - Benoit Malard AU - Petr Sittner AU - Sophie Berveiller AU - Etienne Patoor TI - Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods JO - Comptes Rendus. Physique PY - 2012 SP - 280 EP - 292 VL - 13 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.12.003 LA - en ID - CRPHYS_2012__13_3_280_0 ER -
%0 Journal Article %A Benoit Malard %A Petr Sittner %A Sophie Berveiller %A Etienne Patoor %T Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods %J Comptes Rendus. Physique %D 2012 %P 280-292 %V 13 %N 3 %I Elsevier %R 10.1016/j.crhy.2011.12.003 %G en %F CRPHYS_2012__13_3_280_0
Benoit Malard; Petr Sittner; Sophie Berveiller; Etienne Patoor. Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 280-292. doi : 10.1016/j.crhy.2011.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.003/
[1] Shape Memory Alloys (K. Otsuka; C.M. Wayman, eds.), Cambridge University Press, 1998, p. 27
[2] et al. Proceedings Icomat 2008, Santa Fe USA (G.B. Olson; D.S. Lieberman; A. Saxena, eds.), The Minerals, Metals & Materials Society, 2009, pp. 445-452
[3] A.D. Evans, Residual stress characterisation of peened aerospace materials, PhD thesis University of Manchester, 2005.
[4] Depth capabilities of neutron and synchrotron diffraction strain, J. Appl. Cryst., Volume 37 (2004), pp. 607-612
[5] et al. Proc. of IUTAM 2001, Solid Mechanics and its Applications, vol. 101, Kluwer Academic Publishers, 2001, p. 179
[6] et al. In situ high resolution neutron diffraction study of stress induced martensitic transformation in CuAlZnMn shape memory alloy, Mat. Sci. For., Volume 347–349 (2000), pp. 334-339
[7] et al. Stress induced martensitic transformation in CuAlZnMn polycrystal investigated by two in situ neutron diffraction techniques, Mat. Sci. Eng. A, Volume 324 (2002) no. 1–2, pp. 225-234
[8] et al. Load partition in shape memory alloy polycrystals (M. Tokuda; B. Xu, eds.), Proc. of Immm, Mie University Press, Tsu, Japan, 2001, pp. 35-46
[9] P. Šittner, et al. Characterization of stress induced martensitic transformation in shape memory alloys by in situ neutron diffraction techniques, in: J. Redmond, J. Main (Eds.), Proc. of Adaptive Structures and Material Systems, AD-vol. 60, Orlando, FL, 2000, pp. 25–35.
[10] D. Neov, et al., in: XVIII Conference on Applied Crystallography (CAC), Poland, 2000.
[11] et al. In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy, Acta Materialia, Volume 59 (2011), pp. 3636-3645
[12] Caractérisation multiéchelle par diffraction de neutrons et rayonnement synchrotron de la transformation martensitique sous contrainte dans un alliage à mémoire de forme CuAlBe http://pastel.archives-ouvertes.fr/pastel-00004479/en/ Thèse de doctorat de lʼENSAM (CER Metz), 2008
[13] et al. Stress determination during the mechanically-induced martensite phase transformation in the superelastic alloy CuAlBe by neutron diffraction, Mat. Sci. Forum, Volume 524 (2006), pp. 905-910
[14] et al. Orthorhombic lattice deformation of CuAlBe shape-memory single crystals under cyclic strain, J. Appl. Cryst., Volume 34 (2001), pp. 722-729
[15] et al. Phase quantification during pseudoelastic cycling of Cu–13.1Al–4.0Ni (wt.%) single-crystal shape memory alloys using neutron diffraction, Acta Materialia, Volume 56 (2008), pp. 4724-4738
[16] Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, Int. J. Plast., Volume 16 (2000), pp. 1243-1268
[17] Micromechanics modelling of NiTi polycrystalline aggregates transforming under tension and compression stress, Mat. Sci. Eng. A, Volume 378 (2004) no. 1–2, pp. 490-498
[18] et al. In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Mat. Sci. Eng. A, Volume 378 (2004) no. 1–2, pp. 97-104
[19] Analyse multiéchelles de la transformation martensitique induite par contrainte dans les AMFs. Corrélation contraintes-microstructure http://pastel.archives-ouvertes.fr/docs/00/50/03/95/PDF/These-B-KAOUACHE.pdf Thèse de doctorat de lʼENSAM (CER, Metz), 2006
[20] F. Moreau, Etude par diffraction des rayons X des effets du cyclage pseudoélastique de AMF CuAlBe, Thèse de doctorat de lʼUniversité de Metz, 1998.
[21] Residual Stress Measurement by Diffraction and Interpretation, Springer Verlag, New York, 1987
[22] C.A. Volkert, et al. in: C. Gundlach, et al. (Eds.), Proc. 25th Risø Int. Symp. Mater. Sci., Risø National Laboratory, Denmark, 2004, pp. 171.
[23] et al. High energy synchrotron radiation. A new probe for condensed matter research, J. Phys. IV France, Volume 4 (1994), pp. 415-421
[24] Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, Springer Tracts in Modern Physics, 2005
[25] et al. Tracking: A method for structural characterization of grains in powders or polycrystals, J. Appl. Cryst., Volume 34 (2001), pp. 744-750
[26] et al. Nucl. Instrum. Meth. Phys. Res. A, 467 (2001), pp. 936-943
[27] et al. High spatial resolution stress measurements using synchrotron based scanning X-ray microdiffraction with white or monochromatic beam, Mat. Sci. Eng. A, Volume 399 (2005) no. 1–2, pp. 92-98
[28] et al. Micromechanics constitutive description of thermoelastic martensitic transformations, Adv. Appl. Mech., Volume 31 (1994), pp. 249-298
[29] et al. Thermomechanical behavior of shape memory alloy under complex loading conditions, Int. J. Plast., Volume 15 (1999), pp. 223-239
[30] et al. Phase fraction, texture and strain evolution in superelastic NiTi and composite investigated by neutron diffraction, Acta Materialia, Volume 47 (1999) no. 12, pp. 3353-3366
[31] et al. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi, Acta Materialia, Volume 59 (2011), pp. 5055-5066
[32] et al. Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading, Acta Materialia, Volume 58 (2010), pp. 2344-2354
[33] et al. Neutron diffraction studies and multivariant simulations of shape memory alloys: Empirical texture development–mechanical response relations of martensitic nickel–titanium, Acta Materialia, Volume 59 (2011), pp. 2841-2849
[34] et al. Texture development and strain hysteresis in a NiTi shape-memory alloy during thermal cycling under load, Acta Materialia, Volume 57 (2009), pp. 2403-2417
[35] et al. In situ observation of individual variant transformations in polycrystalline NiTi, Scripta Materialia, Volume 59 (2008), pp. 1059-1062
[36] et al. X-ray studies of stress-induced phase transformations of superelastic NiTi shape memory alloys under uniaxial load, Mat. Sci. Eng. A, Volume 481–482 (2008), pp. 414-419
[37] et al. In-situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires, Acta Materialia, Volume 59 (2011), pp. 1542-1556
Cited by Sources:
Comments - Policy