We review our experiments on the electronic transport properties of atomic contacts between metallic electrodes, in particular superconducting ones. Despite ignorance of the exact atomic configuration, these ultimate quantum point contacts can be manipulated and well characterized in-situ. They allow performing fundamental tests of the scattering theory of quantum transport. In particular, we discuss the case of the Josephson effect.
Nous décrivons un ensemble dʼexpériences de transport électronique que notre groupe a réalisées sur des contacts atomiques entre des électrodes métalliques, en particulier dans lʼétat supraconducteur. Bien que leur configuration atomique exacte ne soit pas connue, ces contacts ponctuels quantiques peuvent être manipulés et caractérisés in-situ, et permettent de mener à bien des tests fondamentaux de la théorie en diffusion du transport quantique. Nous discutons en particulier le cas de lʼeffet Josephson.
Accepted:
Published online:
Mot clés : Contacts atomiques, Supraconductivité, Transport quantique
L. Bretheau 1; Ç. Girit 1; L. Tosi 1; M. Goffman 1; P. Joyez 1; H. Pothier 1; D. Esteve 1; C. Urbina 1
@article{CRPHYS_2012__13_1_89_0, author = {L. Bretheau and \c{C}. Girit and L. Tosi and M. Goffman and P. Joyez and H. Pothier and D. Esteve and C. Urbina}, title = {Superconducting quantum point contacts}, journal = {Comptes Rendus. Physique}, pages = {89--100}, publisher = {Elsevier}, volume = {13}, number = {1}, year = {2012}, doi = {10.1016/j.crhy.2011.12.006}, language = {en}, }
TY - JOUR AU - L. Bretheau AU - Ç. Girit AU - L. Tosi AU - M. Goffman AU - P. Joyez AU - H. Pothier AU - D. Esteve AU - C. Urbina TI - Superconducting quantum point contacts JO - Comptes Rendus. Physique PY - 2012 SP - 89 EP - 100 VL - 13 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2011.12.006 LA - en ID - CRPHYS_2012__13_1_89_0 ER -
L. Bretheau; Ç. Girit; L. Tosi; M. Goffman; P. Joyez; H. Pothier; D. Esteve; C. Urbina. Superconducting quantum point contacts. Comptes Rendus. Physique, Volume 13 (2012) no. 1, pp. 89-100. doi : 10.1016/j.crhy.2011.12.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.006/
[1] Observation of he Aharonov–Bohm oscillations in normal-metal rings, Physical Review Letters, Volume 54 (1985), p. 2696
[2] Electrical resistance of disordered one-dimensional lattices, Philosophical Magazine, Volume 21 (1970), pp. 863-867
[3] Wave-packet approach to noise in multichannel mesoscopic systems, Physical Review B, Volume 45 (1992), p. 1742
[4] Quantum Transport: Introduction to Nanoscience, Cambridge University Press, Cambridge, UK, New York, 2009
[5] Quantized conductance of point contacts in a two-dimensional electron gas, Physical Review Letters, Volume 60 (1988), p. 848
[6] One-dimensional transport and the quantisation of the ballistic resistance, Journal of Physics C: Solid State Physics, Volume 21 (1988), p. L209-L214
[7] Quantum properties of atomic-sized conductors, Physics Reports, Volume 377 (2003), p. 81
[8] An atomic switch realized with the scanning tunnelling microscope, Nature, Volume 352 (1991), pp. 600-603
[9] Electron tunneling experiments using Nb–Sn “break” junctions, Journal of Applied Physics, Volume 58 (1985), p. 3888
[10] Experimental observation of the transition from weak link to tunnel junction, Physica C: Superconductivity, Volume 191 (1992), pp. 485-504
[11] Conduction channel transmissions of atomic-size aluminum contacts, Physical Review Letters, Volume 78 (1997), p. 3535
[12] Adjustable nanofabricated atomic size contacts, Review of Scientific Instruments, Volume 67 (1996), p. 108
[13] Atomic-sized metallic contacts: Mechanical properties and electronic transport, Physical Review Letters, Volume 76 (1996), p. 2302
[14] Metallic adhesion in atomic-size junctions, Physical Review Letters, Volume 93 (2004), p. 116803
[15] Jumps in electronic conductance due to mechanical instabilities, Physical Review Letters, Volume 70 (1993), p. 2138
[16] Quantized conductance in atom-sized wires between two metals, Physical Review B, Volume 52 (1995), p. 8499
[17] Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms, Physical Review B, Volume 57 (1998), p. 3283
[18] Formation and manipulation of a metallic wire of single gold atoms, Nature, Volume 395 (1998), pp. 783-785
[19] Quantized conductance through individual rows of suspended gold atoms, Nature, Volume 395 (1998), pp. 780-783
[20] Real-time imaging of atomistic process in one-atom-thick metal junctions, Physical Review B, Volume 63 (2001), p. 073405
[21] e-Journal of Surface Science and Nanotechnology, 7 (2009), pp. 549-552
[22] R. Cron, Atomic contacts: A test-bed for mesoscopic physics, PhD thesis, Université Pierre et Marie Curie, Paris, France, 2001. Available at http://tel.archives-ouvertes.fr/tel-00001329/fr/.
[23] Explanation of subharmonic energy gap structure in superconducting contacts, Physica B+C, Volume 109–110 (1982), pp. 1657-1664
[24] Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Physical Review B, Volume 25 (1982), p. 4515
[25] Superconducting tunneling without the tunneling hamiltonian. II. Subgap harmonic structure, Journal of Low Temperature Physics, Volume 68 (1987), p. 1
[26] Ac Josephson effect in a single quantum channel, Physical Review Letters, Volume 75 (1995), p. 1831
[27] Hamiltonian approach to the transport properties of superconducting quantum point contacts, Physical Review B, Volume 54 (1996), p. 7366
[28] Distribution of conduction channels in nanoscale contacts: Evolution towards the diffusive limit, Europhysics Letters (EPL), Volume 70 (2005), pp. 663-669
[29] The signature of chemical valence in the electrical conduction through a single-atom contact, Nature (London), Volume 394 (1998), p. 154
[30] Proximity effect and multiple Andreev reflections in gold atomic contacts, Physical Review Letters, Volume 86 (2001), p. 284
[31] Possible new effects in superconductive tunnelling, Phys. Lett., Volume 1 (1962), p. 251
[32] The current–phase relation in Josephson junctions, Reviews of Modern Physics, Volume 76 (2004), p. 411
[33] A unified theory of clean Josephson junctions, Physica B: Condensed Matter, Volume 165–166 (1990), pp. 967-968
[34] Josephson current through a superconducting quantum point contact shorter than the coherence length, Physical Review Letters, Volume 66 (1991), p. 3056
[35] Sov. Phys. JETP, 19 (1964), p. 1228
[36] Suppression of the Josephson current through a narrow, mesoscopic, semiconductor channel by a single impurity, Phys. Rev. B, Volume 46 (1992), pp. 12573-12586
[37] Andreev quantum dots for spin manipulation, Physical Review Letters, Volume 90 (2003), p. 226806
[38] Supercurrent in atomic point contacts and Andreev states, Physical Review Letters, Volume 85 (2000), p. 170
[39] Measurement of the current–phase relation of superconducting atomic contacts, Physical Review Letters, Volume 99 (2007), p. 127005-4
[40] B. Huard, Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations, PhD thesis, Université Pierre et Marie Curie, Paris, France, 2006. Available at http://tel.archives-ouvertes.fr/tel-00119371/fr/.
[41] M. Chauvin, Effet Josephson dans les contacts atomiques (The Josephson effect in atomic contacts), PhD thesis, Université Pierre et Marie Curie, Paris, France, 2005. Available at http://tel.archives-ouvertes.fr/tel-00107465/fr/.
[42] Thermal activation of a hysteretic dc superconducting quantum interference device from its different zero-voltage states, Physical Review B (Condensed Matter and Materials Physics), Volume 46 (1992), pp. 5507-5522
[43] Q. Le Masne, Asymmetric current fluctuations and Andreev states probed with a Josephson junction, PhD thesis, Université Pierre et Marie Curie, Paris, France, 2009. Available at http://tel.archives-ouvertes.fr/tel-00482483/fr/.
[44] Controlled dephasing of Andreev states in superconducting quantum point contacts, Physical Review B, Volume 64 (2001), p. 140511
[45] Evidence for long-lived quasiparticles trapped in superconducting point contacts, Physical Review Letters, Volume 106 (2011), p. 257003
[46] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Physical Review A, Volume 69 (2004), p. 62320
[47] Effect of a transmission line resonator on a small capacitance tunnel junction, Physical Review Letters, Volume 73 (1994), pp. 3455-3458
[48] Bright side of the Coulomb blockade, Physical Review Letters, Volume 106 (2011), p. 217005
[49] Multiple-charge-quanta shot noise in superconducting atomic contacts, Physical Review Letters, Volume 86 (2001), pp. 4104-4107
[50] Dynamical Coulomb blockade in quantum point contacts, Electronic Correlations: From Meso- to Nano-Physics, EDP Sciences, 2001
[51] Crossover from Josephson to multiple Andreev reflection currents in atomic contacts, Physical Review Letters, Volume 99 (2007), p. 067008
[52] Superconducting atomic contacts under microwave irradiation, Physical Review Letters, Volume 97 (2006), p. 067006
[53] Two-level hamiltonian of a superconducting quantum point contact, Phys. Rev. B, Volume 59 (1999), pp. 8444-8446
[54] Andreev level qubit, Physical Review Letters, Volume 90 (2003), p. 087003
[55] Dynamics and phonon-induced decoherence of Andreev level qubit, Physical Review B (Condensed Matter and Materials Physics), Volume 71 (2005), p. 214505
[56] Flux qubit with a quantum point contact, Physica C: Superconductivity, Volume 368 (2002), p. 315
[57] Quantum bits with Josephson junctions (Review article), Low Temperature Physics, Volume 33 (2007), p. 724
[58] Manipulation with Andreev states in spin active mesoscopic Josephson junctions, Physical Review B, Volume 77 (2008), p. 184506
Cited by Sources:
Comments - Policy