Comptes Rendus
New pathways to control the evolution of the atomic motion in metallic glasses
[Nouvelles voies pour contrôler l’évolution du mouvement atomique dans les verres métalliques]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 165-175.

Les verres métalliques sont des matériaux qui suscitent une grande attention en raison de leurs propriétés exceptionnelles, notamment leur résistance à la corrosion ainsi que leur haute résistance à la fracture combinée à une large déformation élastique. De plus, certaines compositions permettent une vitrification avec des vitesses de refroidissement relativement lente, permettant la synthèse de matériaux massifs, avec des rayons critiques de synthèse supérieurs au centimètre, ouvrant la voie à une utilisation industrielle des verres métalliques.

Néanmoins, tous les verres sont sujet à une relaxation spontanée vers l’état liquide, plus ou moins lente, appelée vieillissement, et qui affecte la structure, la dynamique et les propriétés macroscopiques du verre. Dans le cas des verres métallique, les effets du vieillissement sont particulièrement importants, incluant une fragilité accrue du verre, et bloquent leur potentiel applicatif.

De fait, la connaissance et la compréhension des mécanismes microscopiques associés au vieillissement font l’objet d’une recherche intense, tant du point de vue applicatif que fondamental. Dans cet article, nous présentons les récents développements de la spectroscopie de corrélation des photons des rayons X (X-ray Photon Correlation Spectroscopy, ou XPCS), qui permet de quantifier la mobilité atomique au sein des matériaux désordonnés, et son application pour caractériser le vieillissement des verres à l’échelle microscopique. Nous montrons que des protocoles thermiques ou mécaniques appropriés au niveau de la synthèse et la préparation des verres métalliques permettent de modifier la stabilité du matériau vitreux, et d’aboutir à un verre rajeuni ou vieilli.

Metallic glass formers are a relatively new entry in glass physics, which has attracted large interest in both physics and materials science communities due to the unique mechanical and structural properties of these materials. Physical aging is however one of the main obstacle to their widespread use as it affects their properties at all length scales. The knowledge of the microscopic mechanisms inducing aging and relaxation is therefore extremely important for both fundamental and applied sciences. In this article we present a review of the recent advances made with the X-ray photon correlation spectroscopy technique on the study of the collective particle motion and physical aging in metallic glasses at the atomic level. We show that a careful tuning of the sample preparation or the application of specific thermal protocols have the potential to drive the glass into more aged or rejuvenated microscopic configurations with different stabilities.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.149
Keywords: Metallic glasses, Physical aging, X-ray photon correlation spectroscopy, Atomic dynamics, Synchrotron radiation, Structural relaxation
Mot clés : Verres métalliques, Vieillissement, Corrélation de photons des rayons X, Dynamique atomique, Rayonnement synchrotron, Relaxation structurelle
Antoine Cornet 1, 2 ; Beatrice Ruta 1, 2

1 Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
2 European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, Grenoble 38043, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_165_0,
     author = {Antoine Cornet and Beatrice Ruta},
     title = {New pathways to control the evolution of the atomic motion in metallic glasses},
     journal = {Comptes Rendus. Physique},
     pages = {165--175},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.149},
     language = {en},
}
TY  - JOUR
AU  - Antoine Cornet
AU  - Beatrice Ruta
TI  - New pathways to control the evolution of the atomic motion in metallic glasses
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 165
EP  - 175
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.149
LA  - en
ID  - CRPHYS_2023__24_S1_165_0
ER  - 
%0 Journal Article
%A Antoine Cornet
%A Beatrice Ruta
%T New pathways to control the evolution of the atomic motion in metallic glasses
%J Comptes Rendus. Physique
%D 2023
%P 165-175
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.149
%G en
%F CRPHYS_2023__24_S1_165_0
Antoine Cornet; Beatrice Ruta. New pathways to control the evolution of the atomic motion in metallic glasses. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 165-175. doi : 10.5802/crphys.149. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.149/

[1] L. Berthier; G. Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI

[2] W. H. Wang Dynamic relaxations and relaxation-property relationships in metallic glasses, Prog. Mater. Sci., Volume 106 (2019), 100561 | DOI

[3] A. L. Greer Metallic glasseson the threshold, Mater. Today, Volume 12 (2009) no. 1, pp. 14-22 | DOI

[4] B. Ruta et al. Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy, Phys. Rev. Lett., Volume 109 (2012) no. 16, 165701 | DOI

[5] A. Inoue; F. L. Kong; S. L. Zhu; A. L. Greer Multicomponent bulk metallic glasses with elevated-temperature resistance, MRS Bull., Volume 44 (2019) no. 11, pp. 867-872 | DOI

[6] G. Kumar; P. Neibecker; Y. H. Liu; J. Schroers Critical fictive temperature for plasticity in metallic glasses, Nat. Commun., Volume 4 (2013) no. 1, 1536 | DOI

[7] B. Ruta; E. Pineda; Z. Evenson Relaxation processes and physical aging in metallic glasses, J. Phys.: Condens. Matter., Volume 29 (2017) no. 50, 503002 | DOI

[8] F. Zhai; E. Pineda; B. Ruta; M. Gonzalez-Silveira; D. Crespo Aging and structural relaxation of hyper-quenched Mg 65 Cu 25 Y 10 metallic glass, J. Alloys Compd., Volume 615 (2014), p. S9-S12 | DOI

[9] A. Madsen; A. Fluerasu; B. Ruta Structural dynamics of materials probed by X-ray photon correlation spectroscopy, Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (E. J. Jaeschke; S. Khan; J. R. Schneider; J. B. Hastings, eds.), Springer International Publishing, Cham, 2016, pp. 1617-1641 | DOI

[10] Z. Evenson et al. X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass, Phys. Rev. Lett., Volume 115 (2015) no. 17, 175701 | DOI

[11] V. M. Giordano; B. Ruta Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging, Nat. Commun., Volume 7 (2016) no. 1, 10344 | DOI

[12] B. Ruta; V. M. Giordano; L. Erra; C. Liu; E. Pineda Structural and dynamical properties of Mg65Cu25Y10 metallic glasses studied by in situ high energy X-ray diffraction and time resolved X-ray photon correlation spectroscopy, J. Alloys Compd., Volume 615 (2014), p. S45-S50 | DOI

[13] Y. Fan; T. Iwashita; T. Egami Crossover from localized to cascade relaxations in metallic glasses, Phys. Rev. Lett., Volume 115 (2015) no. 4, 045501 | DOI

[14] D. Cangialosi; V. M. Boucher; A. Alegría; J. Colmenero Direct evidence of two equilibration mechanisms in glassy polymers, Phys. Rev. Lett., Volume 111 (2013) no. 9, 095701 | DOI

[15] I. Gallino et al. Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former, Acta Mater., Volume 144 (2018), pp. 400-410 | DOI

[16] P. Luo; P. Wen; H. Y. Bai; B. Ruta; W. H. Wang Relaxation decoupling in metallic glasses at low temperatures, Phys. Rev. Lett., Volume 118 (2017) no. 22, 225901 | DOI

[17] L. M. C. Janssen Mode-coupling theory of the glass transition: a primer, Front. Phys., Volume 6 (2018), 97 | DOI

[18] B. Ruta et al. Wave-vector dependence of the dynamics in supercooled metallic liquids, Phys. Rev. Lett., Volume 125 (2020) no. 5, 055701 | DOI

[19] A. Cavagna Supercooled liquids for pedestrians, Phys. Rep., Volume 476 (2009) no. 4, pp. 51-124 | DOI

[20] N. Amini; F. Yang; E. Pineda; B. Ruta; M. Sprung; A. Meyer Intrinsic relaxation in a supercooled ZrTiNiCuBe glass forming liquid, Phys. Rev. Mater., Volume 5 (2021) no. 5, 055601 | DOI

[21] M. Bouzid; J. Colombo; L. V. Barbosa; E. Del Gado Elastically driven intermittent microscopic dynamics in soft solids, Nat. Commun., Volume 8 (2017) no. 1, 15846 | DOI

[22] E. E. Ferrero; K. Martens; J.-L. Barrat Relaxation in yield stress systems through elastically interacting activated events, Phys. Rev. Lett., Volume 113 (2014) no. 24, 248301 | DOI

[23] D. Soriano; H. Zhou; S. Hilke; E. Pineda; B. Ruta; G. Wilde Relaxation dynamics of Pd–Ni–P metallic glass: decoupling of anelastic and viscous processes, J. Phys.: Condens. Matter., Volume 33 (2021) no. 16, 164004 | DOI

[24] Z. W. Wu; W. Kob; W.-H. Wang; L. Xu Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt, Nat. Commun., Volume 9 (2018) no. 1, 5334 | DOI

[25] L. Cipelletti et al. Universal non-diffusive slow dynamics in aging soft matter, Faraday Discuss., Volume 123 (2003) no. 0, pp. 237-251 | DOI

[26] L. Cipelletti; S. Manley; R. C. Ball; D. A. Weitz Universal aging features in the restructuring of fractal colloidal gels, Phys. Rev. Lett., Volume 84 (2000) no. 10, pp. 2275-2278 | DOI

[27] J.-P. Bouchaud; E. Pitard Anomalous dynamical light scattering in soft glassy gels, Eur. Phys. J. E, Volume 6 (2001) no. 3, pp. 231-236 | DOI

[28] H. Wagner et al. Local elastic properties of a metallic glass, Nat. Mater., Volume 10 (2011) no. 6, pp. 439-442 | DOI

[29] B. Ruta; G. Baldi; G. Monaco; Y. Chushkin Compressed correlation functions and fast aging dynamics in metallic glasses, J. Chem. Phys., Volume 138 (2013) no. 5, 054508 | DOI

[30] P. Luo et al. Nonmonotonous atomic motions in metallic glasses, Phys. Rev. B, Volume 102 (2020) no. 5, 054108 | DOI

[31] S. F. Swallen et al. Organic glasses with exceptional thermodynamic and kinetic stability, Science, Volume 315 (2007) no. 5810, pp. 353-356 | DOI

[32] T. Egami; Y. Tong; W. Dmowski Deformation in metallic glasses studied by synchrotron X-ray diffraction, Metals, Volume 6 (2016) no. 1, 22 | DOI

[33] S. V. Ketov et al. Rejuvenation of metallic glasses by non-affine thermal strain, Nature, Volume 524 (2015) no. 7564, pp. 200-203 | DOI

[34] H.-B. Yu; Y. Luo; K. Samwer Ultrastable metallic glass, Adv. Mater., Volume 25 (2013) no. 41, pp. 5904-5908 | DOI

[35] M. Lüttich et al. Anti-aging in ultrastable metallic glasses, Phys. Rev. Lett., Volume 120 (2018) no. 13, 135504 | DOI

[36] L. Q. Shen et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass, Nat. Commun., Volume 9 (2018) no. 1, 4414 | DOI

[37] P. Luo et al. Microscopic structural evolution during ultrastable metallic glass formation, ACS Appl. Mater. Interf., Volume 13 (2021) no. 33, pp. 40098-40105 | DOI

[38] P. Luo et al. Ultrastable metallic glasses formed on cold substrates, Nat. Commun., Volume 9 (2018), 1389 | DOI

[39] Y. Sun; A. Concustell; A. L. Greer Thermomechanical processing of metallic glasses: extending the range of the glassy state, Nat. Rev. Mater., Volume 1 (2016) no. 9, pp. 1-14 | DOI

[40] F. Meng; K. Tsuchiya; S. Li; Y. Yokoyama Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass, Appl. Phys. Lett., Volume 101 (2012) no. 12, 121914 | DOI

[41] W. Dmowski et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation, Acta Mater., Volume 58 (2010) no. 2, pp. 429-438 | DOI

[42] F. Meng; S. Wang; D. Sun Investigation of relaxation behavior in highly rejuvenated bulk metallic glasses by in-situ synchrotron X-ray scattering, Intermetallics, Volume 121 (2020), 106764 | DOI

[43] H. Rösner; M. Peterlechner; C. Kübel; V. Schmidt; G. Wilde Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy, Ultramicroscopy, Volume 142 (2014), pp. 1-9 | DOI

[44] V. Schmidt; H. Rösner; M. Peterlechner; G. Wilde; P. M. Voyles Quantitative measurement of density in a shear band of metallic glass monitored along its propagation direction, Phys. Rev. Lett., Volume 115 (2015) no. 3, 035501 | DOI

[45] C. Liu; V. Roddatis; P. Kenesei; R. Maaß Shear-band thickness and shear-band cavities in a Zr-based metallic glass, Acta Mater., Volume 140 (2017), pp. 206-216 | DOI

[46] H. Chen; Y. He; G. J. Shiflet; S. J. Poon Deformation-induced nanocrystal formation in shear bands of amorphous alloys, Nature, Volume 367 (1994) no. 6463, pp. 541-543 | DOI

[47] G. Wilde; H. Rösner Nanocrystallization in a shear band: An in situ investigation, Appl. Phys. Lett., Volume 98 (2011) no. 25, 251904 | DOI

[48] Y. Zhang; A. L. Greer Thickness of shear bands in metallic glasses, Appl. Phys. Lett., Volume 89 (2006) no. 7, 071907 | DOI

[49] S. Küchemann; C. Liu; E. M. Dufresne; J. Shin; R. Maaß Shear banding leads to accelerated aging dynamics in a metallic glass, Phys. Rev. B, Volume 97 (2018) no. 1, 014204 | DOI

[50] H. Zhou et al. X-ray photon correlation spectroscopy revealing the change of relaxation dynamics of a severely deformed Pd-based bulk metallic glass, Acta Mater., Volume 195 (2020), pp. 446-453 | DOI

[51] R. J. Xue et al. Enhanced kinetic stability of a bulk metallic glass by high pressure, Appl. Phys. Lett., Volume 109 (2016) no. 22, 221904 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Computer simulations of the glass transition and glassy materials

Jean-Louis Barrat; Ludovic Berthier

C. R. Phys (2023)


Organic Glass-Forming Liquids and the Concept of Fragility

Christiane Alba-Simionesco

C. R. Phys (2023)


Coarse-graining amorphous plasticity: impact of rejuvenation and disorder

Botond Tyukodi; Armand Barbot; Reinaldo García-García; ...

C. R. Phys (2023)