[Suppression de la décohérence par refroidissement optomécanique par cavité]
Nous considérons une configuration de refroidissement optomécanique par cavité constituée par un résonateur mécanique (désigné par b) et un résonateur mécanique (désigné par a) couplés de façon que la fréquence effective de résonance du résonateur a dépend linéairement du déplacement du résonateur b. Nous étudions si la rétroaction peut être appliquée efficacement à la suppression de la décohérence dans une telle configuration. Dans ce but nous considérons le cas où le résonateur mécanique est préparé dans une superposition de deux états cohérents et nous évaluons le taux de décohérence. Nous trouvons que la décohérence ne diminue pas de façon significative si le résonateur a est supposé avoir une réponse linéaire. Dʼautre part, si le résonateur a présente un non-linéarité de Kerr, et/ou un amortissement non linéaire, le taux de décohérence peut devenir bien plus bas que la valeur dʼéquilibre, pourvu que les paramètres qui caractérisent ces non-linéarités puissent être proches de certaines valeurs optimales précises.
We consider a cavity optomechanical cooling configuration consisting of a mechanical resonator (denoted as resonator b) and an electromagnetic resonator (denoted as resonator a), which are coupled in such a way that the effective resonance frequency of resonator a depends linearly on the displacement of resonator b. We study whether back-reaction effects in such a configuration can be efficiently employed for suppression of decoherence. To that end, we consider the case where the mechanical resonator is prepared in a superposition of two coherent states and evaluate the rate of decoherence. We find that no significant suppression of decoherence is achievable when resonator a is assumed to have a linear response. On the other hand, when resonator a exhibits Kerr nonlinearity and/or nonlinear damping the decoherence rate can be made much smaller than the equilibrium value provided that the parameters that characterize these nonlinearities can be tuned close to some specified optimum values.
Mot clés : Refroidissement optomécanique par cavité, Suppression de la décohérence, Résonateur mécanique
Eyal Buks 1
@article{CRPHYS_2012__13_5_454_0, author = {Eyal Buks}, title = {Decoherence suppression by cavity optomechanical cooling}, journal = {Comptes Rendus. Physique}, pages = {454--469}, publisher = {Elsevier}, volume = {13}, number = {5}, year = {2012}, doi = {10.1016/j.crhy.2012.01.004}, language = {en}, }
Eyal Buks. Decoherence suppression by cavity optomechanical cooling. Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 454-469. doi : 10.1016/j.crhy.2012.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.01.004/
[1] Quantum electromechanical systems, Phys. Rep., Volume 395 (2004), pp. 159-222
[2] Putting mechanics into quantum mechanics, Phys. Today (2005), pp. 36-42
[3] Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703
[4] On gravityʼs role in quantum state reduction, Gen. Relativ. Gravit., Volume 28 (1996), pp. 581-600
[5] Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A, Volume 40 (1989), pp. 1165-1174
[6] Testing the limits of quantum mechanics: Motivation, state of play, prospects, J. Phys. Condens. Matter, Volume 14 (2002), p. R415
[7] Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Phys. Rev. Lett., Volume 54 (1985), pp. 857-860
[8] Preparation of nonclassical states in cavities with a moving mirror, Phys. Rev. A, Volume 56 (1997), p. 4175
[9] Scheme to probe the decoherence of a macroscopic object, Phys. Rev. A, Volume 59 (1999), pp. 3204-3210
[10] Creating and verifying a quantum superposition in a micro-optomechanical system, New J. Phys., Volume 10 (2008), p. 095020
[11] Decoherence and the transition from quantum to classical – REVISITED, 2003 | arXiv
[12] Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., Volume 75 (2003), pp. 715-775
[13] Path integral approach to quantum brownian motion, Physica A, Volume 121 (1983), p. 587
[14] The emergence of classical properties through interaction with the environment, Physik B, Volume 59 (1985), p. 223
[15] Reduction of a wave packet in quantum brownian motion, Phys. Rev. D, Volume 40 (1989), p. 1071
[16] Decoherence and the transition from quantum to classical, Phys. Today, Volume 44 (1991), p. 36
[17] Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett., Volume 67 (1991), p. 699
[18] Noise squeezing in a nanomechanical duffing resonator, Phys. Rev. Lett., Volume 98 (2007), p. 78103
[19] Low quantum noise tranquilizer for Fabry–Perot interferometer, Phys. Lett. A, Volume 293 (2002), pp. 228-234
[20] Ground-state cooling of mechanical resonators, Phys. Rev. B, Volume 69 (2004), p. 125339
[21] Laser cooling of a nanomechanical resonator mode to its quantum ground state, Phys. Rev. Lett., Volume 92 (2004), p. 75507
[22] Quantum nanoelectromechanics with electrons, quasi-particles and cooper pairs: Effective bath descriptions and strong feedback effects, New J. Phys., Volume 7 (2005), p. 238
[23] Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor, New J. Phys., Volume 7 (2005), p. 236
[24] Cantilever cooling with radio frequency circuits, 2006 | arXiv
[25] Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 93902
[26] Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics, Phys. Rev. D, Volume 65 (2001), p. 022002
[27] Ponderomotive effects of electromagnetic radiation, ZhETF, Volume 52 (1967), pp. 986-989 (in Russian)
[28] Investigation of dissipative ponderomotive effects of electromagnetic radiation, ZhETF, Volume 58 (1970), pp. 1550-1555 (in Russian)
[29] Cavity cooling of a microlever, Nature, Volume 432 (2004), pp. 1002-1005
[30] Self cooling of a micromirror by radiation pressure, Nature, Volume 444 (2006), pp. 67-70
[31] Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, Volume 444 (2006), pp. 71-74
[32] Sub-kelvin optical cooling of a micromechanical resonator, Nature, Volume 444 (2006), pp. 75-78
[33] Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry–Perot cavity, Phys. Rev. A, Volume 74 (2006), p. 021802
[34] An all-optical trap for a gram-scale mirror, Phys. Rev. Lett., Volume 98 (2007), p. 150802
[35] Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 97 (2006), p. 243905
[36] Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: Optical characterization and laser cooling, Rev. Sci. Instrum., Volume 78 (2007), p. 13107
[37] Cooling a nanomechanical resonator with quantum back-action, Nature, Volume 443 (2006), pp. 193-196
[38] Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys., Volume 4 (2008), pp. 415-419
[39] Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A, Volume 77 (2008), p. 033804
[40] Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008) no. 5893, pp. 1172-1176
[41] Circuit cavity electromechanics in the strong coupling regime, Nature, Volume 471 (2011) no. 7337, pp. 204-208
[42] Sideband cooling micromechanical motion to the quantum ground state, 2011 | arXiv
[43] Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A, Volume 31 (1985), p. 3761
[44] Performance of cavity-parametric amplifiers, employing Kerr nonlinearities, in the presence of two-photon loss, J. Lightwave Tech., Volume 24 (2006), pp. 5054-5066
[45] Phase uncertainty and loss of interference: A general picture, Phys. Rev. A, Volume 41 (1990) no. 7, pp. 3436-3448
[46] Dephasing in a quantum dot due to coupling with a quantum point contact, Europhys. Lett., Volume 39 (1997), pp. 299-304
[47] Dephasing due to intermode coupling in superconducting stripline resonators, Phys. Rev. A, Volume 73 (2006), p. 23815
[48] Decoherence and recoherence in a vibrating RF SQUID, Phys. Rev. B, Volume 74 (2006), p. 174504
[49] Quantum analysis of a linear DC SQUID mechanical displacement detector, Phys. Rev. B, Volume 76 (2007), p. 14511
[50] Forced and self-excited oscillations of optomechanical cavity, Phys. Rev. E, Volume 84 (2011), p. 046605
Cité par Sources :
Commentaires - Politique