Comptes Rendus
Decoherence suppression by cavity optomechanical cooling
Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 454-469.

We consider a cavity optomechanical cooling configuration consisting of a mechanical resonator (denoted as resonator b) and an electromagnetic resonator (denoted as resonator a), which are coupled in such a way that the effective resonance frequency of resonator a depends linearly on the displacement of resonator b. We study whether back-reaction effects in such a configuration can be efficiently employed for suppression of decoherence. To that end, we consider the case where the mechanical resonator is prepared in a superposition of two coherent states and evaluate the rate of decoherence. We find that no significant suppression of decoherence is achievable when resonator a is assumed to have a linear response. On the other hand, when resonator a exhibits Kerr nonlinearity and/or nonlinear damping the decoherence rate can be made much smaller than the equilibrium value provided that the parameters that characterize these nonlinearities can be tuned close to some specified optimum values.

Nous considérons une configuration de refroidissement optomécanique par cavité constituée par un résonateur mécanique (désigné par b) et un résonateur mécanique (désigné par a) couplés de façon que la fréquence effective de résonance du résonateur a dépend linéairement du déplacement du résonateur b. Nous étudions si la rétroaction peut être appliquée efficacement à la suppression de la décohérence dans une telle configuration. Dans ce but nous considérons le cas où le résonateur mécanique est préparé dans une superposition de deux états cohérents et nous évaluons le taux de décohérence. Nous trouvons que la décohérence ne diminue pas de façon significative si le résonateur a est supposé avoir une réponse linéaire. Dʼautre part, si le résonateur a présente un non-linéarité de Kerr, et/ou un amortissement non linéaire, le taux de décohérence peut devenir bien plus bas que la valeur dʼéquilibre, pourvu que les paramètres qui caractérisent ces non-linéarités puissent être proches de certaines valeurs optimales précises.

Published online:
DOI: 10.1016/j.crhy.2012.01.004
Keywords: Cavity optomechanical cooling, Decoherence suppression, Mechanical resonator
Mot clés : Refroidissement optomécanique par cavité, Suppression de la décohérence, Résonateur mécanique

Eyal Buks 1

1 Department of Electrical Engineering, Technion, Haifa 32000, Israel
@article{CRPHYS_2012__13_5_454_0,
     author = {Eyal Buks},
     title = {Decoherence suppression by cavity optomechanical cooling},
     journal = {Comptes Rendus. Physique},
     pages = {454--469},
     publisher = {Elsevier},
     volume = {13},
     number = {5},
     year = {2012},
     doi = {10.1016/j.crhy.2012.01.004},
     language = {en},
}
TY  - JOUR
AU  - Eyal Buks
TI  - Decoherence suppression by cavity optomechanical cooling
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 454
EP  - 469
VL  - 13
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.01.004
LA  - en
ID  - CRPHYS_2012__13_5_454_0
ER  - 
%0 Journal Article
%A Eyal Buks
%T Decoherence suppression by cavity optomechanical cooling
%J Comptes Rendus. Physique
%D 2012
%P 454-469
%V 13
%N 5
%I Elsevier
%R 10.1016/j.crhy.2012.01.004
%G en
%F CRPHYS_2012__13_5_454_0
Eyal Buks. Decoherence suppression by cavity optomechanical cooling. Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 454-469. doi : 10.1016/j.crhy.2012.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.01.004/

[1] Miles Blencowe Quantum electromechanical systems, Phys. Rep., Volume 395 (2004), pp. 159-222

[2] Keith C. Schwab; Michael L. Roukes Putting mechanics into quantum mechanics, Phys. Today (2005), pp. 36-42

[3] A.D. OʼConnell; M. Hofheinz; M. Ansmann; Radoslaw C. Bialczak; M. Lenander; Erik Luceroand M. Neeley; D. Sank; H. Wang; M. Weides; J. Wenner; John M. Martinis; A.N. Cleland Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703

[4] Roger Penrose On gravityʼs role in quantum state reduction, Gen. Relativ. Gravit., Volume 28 (1996), pp. 581-600

[5] L. Diosi Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A, Volume 40 (1989), pp. 1165-1174

[6] A.J. Leggett Testing the limits of quantum mechanics: Motivation, state of play, prospects, J. Phys. Condens. Matter, Volume 14 (2002), p. R415

[7] A.J. Leggett; Anupam Garg Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Phys. Rev. Lett., Volume 54 (1985), pp. 857-860

[8] S. Bose; K. Jacobs; P.L. Knight Preparation of nonclassical states in cavities with a moving mirror, Phys. Rev. A, Volume 56 (1997), p. 4175

[9] S. Bose; K. Jacobs; P.L. Knight Scheme to probe the decoherence of a macroscopic object, Phys. Rev. A, Volume 59 (1999), pp. 3204-3210

[10] Dustin Kleckner; Igor Pikovski; Evan Jeffrey; Luuk Ament; Eric Eliel; Jeroen Van Den Brink; Dirk Bouwmeester Creating and verifying a quantum superposition in a micro-optomechanical system, New J. Phys., Volume 10 (2008), p. 095020

[11] Wojciech H. Zurek Decoherence and the transition from quantum to classical – REVISITED, 2003 | arXiv

[12] Wojciech Hubert Zurek Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., Volume 75 (2003), pp. 715-775

[13] A.O. Caldeira; A.J. Leggett Path integral approach to quantum brownian motion, Physica A, Volume 121 (1983), p. 587

[14] E. Joos; H.D. Zeh The emergence of classical properties through interaction with the environment, Physik B, Volume 59 (1985), p. 223

[15] W.G. Unruh; W.H. Zurek Reduction of a wave packet in quantum brownian motion, Phys. Rev. D, Volume 40 (1989), p. 1071

[16] W.H. Zurek Decoherence and the transition from quantum to classical, Phys. Today, Volume 44 (1991), p. 36

[17] D. Rugar; P. Grutter Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett., Volume 67 (1991), p. 699

[18] R. Almog; S. Zaitsev; O. Shtempluck; E. Buks Noise squeezing in a nanomechanical duffing resonator, Phys. Rev. Lett., Volume 98 (2007), p. 78103

[19] V.B. Braginsky; S.P. Vyatchanin Low quantum noise tranquilizer for Fabry–Perot interferometer, Phys. Lett. A, Volume 293 (2002), pp. 228-234

[20] Ivar Martin; Alexander Shnirman; Lin Tian; Peter Zoller Ground-state cooling of mechanical resonators, Phys. Rev. B, Volume 69 (2004), p. 125339

[21] I. Wilson-Rae; P. Zoller; A. Imamolu Laser cooling of a nanomechanical resonator mode to its quantum ground state, Phys. Rev. Lett., Volume 92 (2004), p. 75507

[22] Aashish A. Clerk; Steven Bennett Quantum nanoelectromechanics with electrons, quasi-particles and cooper pairs: Effective bath descriptions and strong feedback effects, New J. Phys., Volume 7 (2005), p. 238

[23] M.P. Blencowe; J. Imbers; A.D. Armour Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor, New J. Phys., Volume 7 (2005), p. 236

[24] D.J. Wineland; J. Britton; R.J. Epstein; D. Leibfried; R.B. Blakestad; K. Brown; J.D. Jost; C. Langer; R. Ozeri; S. Seidelin; J. Wesenberg Cantilever cooling with radio frequency circuits, 2006 | arXiv

[25] Florian Marquardt; Joe P. Chen; A.A. Clerk; S.M. Girvin Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 93902

[26] H.J. Kimble; Y. Levin; A.B. Matsko; K.S. Thorne; S.P. Vyatchanin Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics, Phys. Rev. D, Volume 65 (2001), p. 022002

[27] V.B. Braginsky; A.B. Manukin Ponderomotive effects of electromagnetic radiation, ZhETF, Volume 52 (1967), pp. 986-989 (in Russian)

[28] V.B. Braginsky; A.B. Manukin; M.Yu. Tikhonov Investigation of dissipative ponderomotive effects of electromagnetic radiation, ZhETF, Volume 58 (1970), pp. 1550-1555 (in Russian)

[29] Constanze Höhberger Metzger; Khaled Karrai Cavity cooling of a microlever, Nature, Volume 432 (2004), pp. 1002-1005

[30] S. Gigan; H.R. Böhm; M. Paternostro; F. Blaser; J.B. Hertzberg; K.C. Schwab; D. Bauerle; M. Aspelmeyer; A. Zeilinger Self cooling of a micromirror by radiation pressure, Nature, Volume 444 (2006), pp. 67-70

[31] O. Arcizet; P.F. Cohadon; T. Briant; M. Pinard; A. Heidmann Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, Volume 444 (2006), pp. 71-74

[32] D. Kleckner; D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator, Nature, Volume 444 (2006), pp. 75-78

[33] T. Corbitt; D. Ottaway; E. Innerhofer; J. Pelc; N. Mavalvala Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry–Perot cavity, Phys. Rev. A, Volume 74 (2006), p. 021802

[34] T. Corbitt; Y. Chen; E. Innerhofer; H. Müller-Ebhardt; D. Ottaway; H. Rehbein; D. Sigg; S. Whitcomb; C. Wipf; N. Mavalvala An all-optical trap for a gram-scale mirror, Phys. Rev. Lett., Volume 98 (2007), p. 150802

[35] A. Schliesser; P. DelʼHaye; N. Nooshi; K.J. Vahala; T.J. Kippenberg Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 97 (2006), p. 243905

[36] J.G.E. Harris; B.M. Zwickl; A.M. Jayich Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: Optical characterization and laser cooling, Rev. Sci. Instrum., Volume 78 (2007), p. 13107

[37] A. Naik; O. Buu; M.D. LaHaye; A.D. Armour; A.A. Clerk; M.P. Blencowe; K.C. Schwab Cooling a nanomechanical resonator with quantum back-action, Nature, Volume 443 (2006), pp. 193-196

[38] A. Schliesser; R. Riviere; G. Anetsberger; O. Arcizet; T.J. Kippenberg Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys., Volume 4 (2008), pp. 415-419

[39] C. Genes; D. Vitali; P. Tombesi; S. Gigan; M. Aspelmeyer Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A, Volume 77 (2008), p. 033804

[40] T.J. Kippenberg; K.J. Vahala Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008) no. 5893, pp. 1172-1176

[41] J.D. Teufel; D. Li; M.S. Allman; K. Cicak; A.J. Sirois; J.D. Whittaker; R.W. Simmonds Circuit cavity electromechanics in the strong coupling regime, Nature, Volume 471 (2011) no. 7337, pp. 204-208

[42] J.D. Teufel; T. Donner; Dale Li; J.H. Harlow; M.S. Allman; K. Cicak; A.J. Sirois; J.D. Whittaker; K.W. Lehnert; R.W. Simmonds Sideband cooling micromechanical motion to the quantum ground state, 2011 | arXiv

[43] C.W. Gardiner; M.J. Collett Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A, Volume 31 (1985), p. 3761

[44] Bernard Yurke; Eyal Buks Performance of cavity-parametric amplifiers, employing Kerr nonlinearities, in the presence of two-photon loss, J. Lightwave Tech., Volume 24 (2006), pp. 5054-5066

[45] Ady Stern; Yakir Aharonov; Yoseph Imry Phase uncertainty and loss of interference: A general picture, Phys. Rev. A, Volume 41 (1990) no. 7, pp. 3436-3448

[46] Y. Levinson Dephasing in a quantum dot due to coupling with a quantum point contact, Europhys. Lett., Volume 39 (1997), pp. 299-304

[47] Eyal Buks; Bernard Yurke Dephasing due to intermode coupling in superconducting stripline resonators, Phys. Rev. A, Volume 73 (2006), p. 23815

[48] Eyal Buks; M.P. Blencowe Decoherence and recoherence in a vibrating RF SQUID, Phys. Rev. B, Volume 74 (2006), p. 174504

[49] M.P. Blencowe; E. Buks Quantum analysis of a linear DC SQUID mechanical displacement detector, Phys. Rev. B, Volume 76 (2007), p. 14511

[50] Stav Zaitsev; Ashok K. Pandey; Oleg Shtempluck; Eyal Buks Forced and self-excited oscillations of optomechanical cavity, Phys. Rev. E, Volume 84 (2011), p. 046605

Cited by Sources:

Comments - Policy