[Extrayant les cartes de phase dʼimages à résonance plasmonique : vers une résolution sous-longueur dʼonde]
Nous proposons une méthode originale pour extraire les cartes de phase dʼimages obtenues par microscopie à résonance plasmonique. Les images de phases recalculées à partir des cartes
We present an original method for uncovering phase maps from surface plasmon resonance microscopy images. The phase images obtained from the recording of
Mots-clés : Résonance plasmonique de surface, Imagerie de phase, Microscopie à balayage à résonance plasmonique, Interférométrie hétérodyne
Françoise Argoul 1, 2 ; Thibault Roland 1, 2 ; Audrey Fahys 1, 2 ; Lotfi Berguiga 1, 2 ; Juan Elezgaray 3
@article{CRPHYS_2012__13_8_800_0, author = {Fran\c{c}oise Argoul and Thibault Roland and Audrey Fahys and Lotfi Berguiga and Juan Elezgaray}, title = {Uncovering phase maps from surface plasmon resonance images: {Towards} a sub-wavelength resolution}, journal = {Comptes Rendus. Physique}, pages = {800--814}, publisher = {Elsevier}, volume = {13}, number = {8}, year = {2012}, doi = {10.1016/j.crhy.2012.04.004}, language = {en}, }
TY - JOUR AU - Françoise Argoul AU - Thibault Roland AU - Audrey Fahys AU - Lotfi Berguiga AU - Juan Elezgaray TI - Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution JO - Comptes Rendus. Physique PY - 2012 SP - 800 EP - 814 VL - 13 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2012.04.004 LA - en ID - CRPHYS_2012__13_8_800_0 ER -
%0 Journal Article %A Françoise Argoul %A Thibault Roland %A Audrey Fahys %A Lotfi Berguiga %A Juan Elezgaray %T Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution %J Comptes Rendus. Physique %D 2012 %P 800-814 %V 13 %N 8 %I Elsevier %R 10.1016/j.crhy.2012.04.004 %G en %F CRPHYS_2012__13_8_800_0
Françoise Argoul; Thibault Roland; Audrey Fahys; Lotfi Berguiga; Juan Elezgaray. Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution. Comptes Rendus. Physique, Nanophotonics and near field/Nanophotonique et champ proche, Volume 13 (2012) no. 8, pp. 800-814. doi : 10.1016/j.crhy.2012.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.004/
[1] Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys., Volume 216 (1968), pp. 398-410
[2] Physics of Thin Films, vol. 9, Academic Press, New York, 1977 pp. 145–261 (Chapter III)
[3] Plasmon surface polariton dispersion by direct optical observation, Am. J. Phys. (1980), pp. 669-671
[4] Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays, Anal. Chem., Volume 73 (2001), pp. 1-7
[5] Surface plasmon resonance sensors: review, Sensors and Actuators B, Volume 54 (1999), pp. 3-15
[6] Surface plasmon resonance base sensors (O.S. Wolfbeis, ed.), Springer Ser. Chem. Sens. Biosens., vol. 4, Springer, Berlin/Heidelberg, 2006, pp. 3-44
[7] Investigation of the metal–electrolyte interface using surface plasma waves with ellipsometric detection, Solid State Commun., Volume 16 (1975), pp. 843-847
[8] High sensitivity surface plasmon resonance sensor based on phase detection, Sensors and Actuators B, Volume 35–36 (1996), pp. 187-191
[9] Surface plasmon resonance interferometer for bio and chemical sensors, Opt. Commun., Volume 150 (1998), pp. 5-8
[10] Surface plasmon resonance interferometry for biological and chemical sensing, Sensors and Actuators B, Volume 54 (1999), pp. 43-50
[11] Phase properties of a surface-plasmon resonance from the point of view of sensor applications, Quantum Electron., Volume 28 (1998), pp. 444-448
[12] High resolution angular measurement using surface plasmon resonance via phase interrogation at optimal incident wavelengths, Opt. Lett., Volume 30 (2005), pp. 2727-2729
[13] High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths, Appl. Phys. Lett. A, Volume 88 (2006), p. 141105
[14] Phase jumps and interferometric surface plasmon resonance imaging, Appl. Phys. Lett., Volume 75 (1999), pp. 3917-3919
[15] Surface plasmon resonance phase imaging, Appl. Phys. Lett., Volume 76 (2000) no. 13, pp. 1665-1667
[16] Imaging of surface plasmon launch and propagation using a photon scanning tunneling microscope, Ultramicroscopy, Volume 57 (1995), pp. 287-292
[17] Surface plasmon polariton propagation length: a direct comparison using photon scanning tunneling microscopy and attenuated total reflection, Phys. Rev. B, Volume 63 (2001), p. 205410 (10 pp)
[18] Dark-field surface plasmon microscopy, Opt. Commun., Volume 174 (2000), pp. 151-155
[19] Surface plasmon interferometric microscopy for three dimensional imaging of dynamic processes, Opt. Lett., Volume 31 (2006), pp. 3004-3006
[20] Measurement of refective index change by surface plasmon resonance and phase quadrature interferometry, Opt. Commun., Volume 276 (2007), pp. 283-287
[21] Wavelength-tunable surface plasmon resonance microscope, Rev. Sci. Instrum., Volume 74 (2003), pp. 3182-3184
[22] Excitation of surface plasmon polaritons by a focused laser beam, J. Opt. Soc. Am. B, Volume 15 (1998) no. 4, pp. 1381-1386
[23] Optical
[24] High resolution scanning surface plasmon microscopy, Appl. Opt., Volume 39 (2000), pp. 6279-6287
[25] Local excitation, scattering and interference of surface plasmons, Phys. Rev. Lett., Volume 77 (1996), pp. 1889-1992
[26] Surface plasmon interference excited by tightly focused laser beams, Opt. Lett., Volume 32 (2007), pp. 2535-2537
[27] Surface plasmon fluorescence microscopy: an analysis, J. Microsc., Volume 206 (2002), pp. 120-131
[28] High resolution wide-field surface plasmon microscopy, J. Microsc., Volume 214 (2004), pp. 328-333
[29] High-resolution surface-plasmon imaging in air and in water:
[30] Surface plasmon resonance imaging using a high numerical aperture microscope objective, Anal. Chem., Volume 79 (2007), pp. 2979-2983
[31] Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination, Appl. Opt., Volume 46 (2007) no. 22, pp. 4985-4990
[32] High resolution surface plasmon resonance real-time imaging, Opt. Lett., Volume 34 (2009), pp. 37-39
[33] Radiative decay of non radiative surface plasmons excited by light, Z. Naturforsch. A, Volume 23 (1968), pp. 2135-2136
[34] Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1997
[35] Solid state excitations by electrons (plasma state excitations by electrons), Springer Tracts Mod. Phys., vol. 38, 1965, pp. 84-157
[36] Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts Mod. Phys., vol. 111, Springer, Berlin, 1988
[37] Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies, Surf. Sci., Volume 603 (2009) no. 22, pp. 3307-3320
[38] Surface plasmon resonance characterization of thermally evaporated thin gold films, Surf. Sci., Volume 601 (2007) no. 23, pp. 5445-5458
[39] Comparison between sensitivities of phase and intensity detection in surface plasmon resonance, Opt. Express, Volume 14 (2006), pp. 5641-5650
[40] Scanning surface plasmon imaging of nanoparticles, Phys. Rev. B, Volume 81 (2010) no. 23, p. 235419
[41] L. Berguiga, F. Argoul, Microscope de plasmon de surface haute résolution à balayage en interférométrie hétérodyne avec polarisation radiale, CNRS-ENS Lyon patent DI01877-01, 2008.
[42] Modeling of scanning surface plasmon microscope, J. Opt. Soc. Amer. A, Volume 27 (2010) no. 3, pp. 450-457
[43] An angular-spectrum approach to contrast in reflection acoustic microscopy, J. Appl. Phys., Volume 40 (1978), pp. 5130-5139
[44] A physical model for acoustic signatures, J. Appl. Phys., Volume 50 (1979), pp. 8237-8239
[45] Acoustic microscopy of elastic discontinuities, Proc. Roy. Soc. Lond. Ser. A, Volume 393 (1984), pp. 171-183
[46] Surface plasmon and surface wave microscopy (P. Torok; F.J. Tao, eds.), Optical Imaging and Microscopy, Springer Ser. Opt. Sci., vol. 87, Springer-Verlag, Berlin/Heidelberg, 2007, pp. 347-399 (Chapter 14)
[47] Amplitude and phase images of cellular structures with a scanning surface plasmon microscope, Opt. Express, Volume 19 (2011), pp. 6571-6586
[48] Goos-hanchen shift surface plasmon resonance sensor, Appl. Phys. Lett., Volume 89 (2006), p. 261108
[49] Near-field observation of spatial phase shifts associated with goos-hanchen and surface plasmon resonance effects, Opt. Express, Volume 16 (2008), pp. 1958-1964
- Label-free and dynamic monitoring of cell evolutions using wavelength-multiplexing surface plasmon resonance holographic microscopy, Biomedical Optics Express, Volume 14 (2023) no. 5, p. 2028 | DOI:10.1364/boe.486467
- Measuring Plasmonic Phase Using Radially Polarized Confocal Surface Plasmon Interferometer, IEEE Transactions on Instrumentation and Measurement, Volume 69 (2020) no. 10, p. 7781 | DOI:10.1109/tim.2020.2984136
- Modeling and analysis of surface plasmon microscopy with radial polarization, Optics Communications, Volume 427 (2018), p. 369 | DOI:10.1016/j.optcom.2018.07.001
- Resonant Waveguide Imaging of Living Systems: From Evanescent to Propagative Light, Handbook of Photonics for Biomedical Engineering (2017), p. 613 | DOI:10.1007/978-94-007-5052-4_40
- Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam, Applied Optics, Volume 55 (2016) no. 6, p. 1216 | DOI:10.1364/ao.55.001216
- Resonant Waveguide Imaging of Living Systems: From Evanescent to Propagative Light, Handbook of Photonics for Biomedical Engineering (2016), p. 1 | DOI:10.1007/978-94-007-6174-2_40-1
- , Plasmonics in Biology and Medicine XIII, Volume 9724 (2016), p. 97240G | DOI:10.1117/12.2211331
- Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths, Optics Express, Volume 21 (2013) no. 6, p. 7456 | DOI:10.1364/oe.21.007456
- Quantitative plasmonic measurements using embedded phase stepping confocal interferometry, Optics Express, Volume 21 (2013) no. 9, p. 11523 | DOI:10.1364/oe.21.011523
- Guided wave microscopy: mastering the inverse problem, Optics Letters, Volume 38 (2013) no. 21, p. 4269 | DOI:10.1364/ol.38.004269
Cité par 10 documents. Sources : Crossref
Commentaires - Politique