The exploitation of plasmon resonances to promote the interaction between conjugated molecules and optical fields motivates intensive research. The objectives are to understand the mechanisms of plasmon-mediated interactions, and to realize molecularly- or atomically-precise metal nanostructures, combining field enhancements and optical antenna effects. In this review paper, we present examples of plasmonic-field mappings based on scanning tunneling microscope (STM)-induced light emission or multiphoton photoemission (PEEM), two techniques among those which offer todayʼs best spatial resolutions for plasmon microscopy. An unfamiliar property of the junction of an STM is its ability to behave as a highly localized source of light. It can be exploited to probe optoelectronic properties, in particular plasmonic fields, with ultimate subnanometer spatial resolution, an advantage balanced by a sometimes delicate deconvolution of local-probe influence. Alternatively, local-probe disadvantages can be overcome by imaging the photoemitted electrons, using well-established electron optics. This allows obtaining two-dimensional intensity maps reflecting the unperturbed distribution of the optical near field. This approach provides full field spectroscopic images with a routine spatial resolution of the order of 20 nm (down to 5 nm with recent aberration corrected instruments).
Lʼexploitation des résonances plasmons dans le but de promouvoir lʼinteraction entre des molécules conjuguées et des champs optiques motive actuellement dʼintenses recherches. Les objectifs en sont la compréhension du rôle médiateur des interactions optiques joué par les modes de plasmon et la réalisation de nanostructures métalliques avec une précision moléculaire voire atomique, combinant les effets dʼexaltation de champ et dʼantennes optiques. Dans cet article de synthèse, nous présentons des exemples de cartographie des champs plasmoniques basés sur deux techniques de microscopie : lʼémission de lumière induite par microscopie tunnel à balayage de sonde (scanning tunneling microscopy — STM) et lʼimagerie de photoémission multiphotonique (photoemission electron microscopy — PEEM), deux techniques parmi celles qui offrent aujourdʼhui les meilleures résolutions spatiales pour la microscopie plasmonique. Une propriété peu conventionnelle de la jonction du microscope à effet tunnel est sa capacité à se comporter comme une source localisée de lumière. Celle-ci peut être exploitée pour sonder localement les propriétés opto-électroniques en surface, en particulier les modes plasmoniques, avec une résolution spatiale inférieure au nanomètre. Lʼavantage de cette résolution ultime est cependant contrebalancé par la nécessité dʼune déconvolution parfois délicate de lʼinfluence de la sonde. Alternativement, les inconvénients inhérents aux techniques de sondes locales peuvent être surmontés par lʼimagerie des électrons photoémis, en utilisant les méthodes bien établies dʼoptique électronique. Ceci permet lʼobtention de cartes dʼintensité en deux dimensions reflétant directement la distribution non perturbée du champ proche optique. Cette approche fournit des images avec une résolution spatiale de lʼordre de 20 nm en routine et pouvant atteindre 5 nm avec les instruments les plus récents, incluant un dispositif de correction des aberrations.
Mot clés : Microscopie tunnel à balayage de sonde, Imagerie de photoémission multiphotonique, Résolution spatiale inférieure au nanomètre
Ludovic Douillard 1; Fabrice Charra 1
@article{CRPHYS_2012__13_8_815_0, author = {Ludovic Douillard and Fabrice Charra}, title = {High-resolution microscopy of plasmon field distributions by scanning tunneling luminescence and photoemission electron microscopies}, journal = {Comptes Rendus. Physique}, pages = {815--829}, publisher = {Elsevier}, volume = {13}, number = {8}, year = {2012}, doi = {10.1016/j.crhy.2012.10.001}, language = {en}, }
TY - JOUR AU - Ludovic Douillard AU - Fabrice Charra TI - High-resolution microscopy of plasmon field distributions by scanning tunneling luminescence and photoemission electron microscopies JO - Comptes Rendus. Physique PY - 2012 SP - 815 EP - 829 VL - 13 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2012.10.001 LA - en ID - CRPHYS_2012__13_8_815_0 ER -
%0 Journal Article %A Ludovic Douillard %A Fabrice Charra %T High-resolution microscopy of plasmon field distributions by scanning tunneling luminescence and photoemission electron microscopies %J Comptes Rendus. Physique %D 2012 %P 815-829 %V 13 %N 8 %I Elsevier %R 10.1016/j.crhy.2012.10.001 %G en %F CRPHYS_2012__13_8_815_0
Ludovic Douillard; Fabrice Charra. High-resolution microscopy of plasmon field distributions by scanning tunneling luminescence and photoemission electron microscopies. Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 815-829. doi : 10.1016/j.crhy.2012.10.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.001/
[1] Philosophical Transactions of the Royal Society, 145 (1857)
[2] Physical Review, 69 (1946), p. 681
[3] Reviews of Modern Physics, 57 (1985), p. 783
[4] Ultramicroscopy, 9 (1982), p. 277
[5] Journal of the Optical Society of America B — Optical Physics, 3 (1986), p. 1647
[6] Nature, 391 (1998), p. 667
[7] Ultramicroscopy, 13 (1984), p. 227
[8] Applied Physics Letters, 44 (1984), p. 651
[9] Ultramicroscopy, 111 (2011), p. 273
[10] Philosophical Magazine, 4 (1902), p. 396
[11] Physica Status Solidi, 26 (1968), p. K99
[12] Zeitschrift für Naturforschung, Teil A — Astrophysik, Physik und Physikalische Chemie, 23 (1968), p. 2135
[13] Physical Review B, 79 (2009), p. 5
[14] Journal of Optics A — Pure and Applied Optics, 5 (2003), p. S16
[15] Physical Review Letters, 101 (2008), p. 4
[16] Nature Photonics, 1 (2007), p. 573
[17] Optics Express, 15 (2007), p. 13682
[18] Nano Letters, 8 (2008), p. 3357
[19] Nature Physics, 3 (2007), p. 348
[20] Nano Letters, 7 (2007), p. 2843
[21] ACS Nano, 3 (2009), p. 3015
[22] Physical Review Letters, 103 (2009), p. 4
[23] Physical Review Letters, 100 (2008), p. 4
[24] American Journal of Sciences, XX (1880), p. 305
[25] Physical Review B, 26 (1982), p. 6421
[26] Surface Science, 137 (1984), p. 373
[27] Journal of Physics — Condensed Matter, 1 (1989), p. 10201
[28] Review of Scientific Instruments, 75 (2004), p. 2560
[29] Photochemistry and Photobiology, 85 (2009), p. 21
[30] Analyst, 135 (2010), p. 1175
[31] Europhysics Letters, 8 (1989), p. 435
[32] Science, 262 (1993), p. 1425
[33] Surface Science, 400 (1998), p. 127
[34] Surface Science, 324 (1995), p. 282
[35] Europhysics Letters, 40 (1997), p. 447
[36] The Quantum Theory of Light, Oxford University Press, Oxford, 2003
[37] Physical Review B, 70 (2004), p. 201405(R)
[38] Physical Review Letters, 74 (1995), p. 102
[39] Physical Review, 69 (1946), p. 681
[40] Elements of Quantum Optics, Springer, Berlin, 2007
[41] Optics Communications, 261 (2006), p. 368
[42] Journal of Chemical Physics, 62 (1975), p. 1812
[43] Journal of the Optical Society of America B — Optical Physics, 4 (1987), p. 2004
[44] Applied Physics Letters, 94 (2009), p. 101103
[45] Applied Physics Letters, 33 (1978), p. 203
[46] Physical Review B, 16 (1977), p. 2482
[47] Physical Review B, 27 (1983), p. 4601
[48] Physical Review Letters, 68 (1992), p. 3224
[49] Physical Review Letters, 41 (1978), p. 1746
[50] Physical Review B, 42 (1990), p. 9210
[51] Y. Uehara, Y. Kimura, S. Ushioda, K. Takeuchi, Japanese Journal of Applied Physics, Part 1 — Regular Papers, Short Notes & Review Papers 31 (1992) 2465.
[52] Physical Review B, 62 (2000), p. 2065
[53] Physical Review E, 62 (2000), p. 4318
[54] Physics Reports — Review Section of Physics Letters, 194 (1990), p. 343
[55] Journal of Applied Physics, 91 (2002), p. 3028
[56] Physical Review Letters, 41 (1978), p. 1746
[57] Physical Review B, 44 (1991), p. 12706
[58] Applied Physics Letters, 78 (2001), p. 1994
[59] Physical Review Letters, 93 (2004), p. 147402
[60] Annalen der Physik, 9 (2000), p. 125
[61] Physical Review Letters, 37 (1976), p. 923
[62] Review of Scientific Instruments, 81 (2010), p. 113102
[63] Surface Science, 602 (2008), p. 345
[64] Physical Review B, 67 (2003), p. 153402
[65] Nanocrystals Forming Mesoscopic Structures (M.-P. Pileni, ed.), Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, p. 231
[66] Physical Review Letters, 65 (1990), p. 2418
[67] Chemistry of Materials, 9 (1997), p. 950
[68] Applied Physics Letters, 71 (1997), p. 2940
[69] Physical Review Letters, 84 (2000), p. 5840
[70] Advanced Materials, 12 (2000), p. 663
[71] Advanced Materials, 12 (2000), p. 1583
[72] Physical Review B, 59 (1999), p. 13350
[73] Physical Review B, 83 (2011), p. 35416
[74] Nanotechnology, 22 (2011), p. 175201
[75] Physical Review B, 63 (2001), p. 155404
[76] Physical Review B, 11 (1975), p. 2750
[77] Physical Review B, 46 (1992), p. 7157
[78] Physics Letters A, 37 (1971), p. 439
[79] Vacuum, 41 (1990), p. 476
[80] Technical Physics, 50 (2005), p. 1528
[81] Journal of Physics — Condensed Matter, 9 (1997), p. 5765
[82] New Journal of Physics, 7 (2005), p. 68
[83] Soviet Physics — Uspekhi, 20 (1977), p. 467
[84] Physical Review B, 15 (1977), p. 4557
[85] Applied Physics Letters, 40 (1982), p. 185
[86] Journal of Vacuum Science & Technology, 21 (1982), p. 509
[87] Surface Science, 601 (2007), p. 4706
[88] Advances in Imaging and Electron Physics, vol. 158, Elsevier Academic Press Inc., San Diego, 2009 (p. 1)
[89] Applied Physics A — Materials Science & Processing, 78 (2004), p. 1011
[90] Physical Review Letters, 27 (1971), p. 570
[91] Physics Letters A, 61 (1977), p. 471
[92] Surface Science, 165 (1986), p. L35
[93] Physical Review B, 43 (1991), p. 8870
[94] Journal of Chemical Physics, 102 (1995), p. 8606
[95] Physical Review Letters, 85 (2000), p. 2921
[96] Physical Review Letters, 86 (2001), p. 5180
[97] Chemical Physics Letters, 380 (2003), p. 704
[98] Physical Review B — Condensed Matter and Materials Physics, 67 (2003), p. 10
[99] Surface Science, 601 (2007), p. 4714
[100] W. Driesel, H. Bethge, in: Proc. Conf. on Energy-Pulse Modification of Semiconductors and Related Materials II, 1985.
[101] Journal of Physics — Condensed Matter, 21 (2009), p. 10
[102] Ultramicroscopy, 31 (1989), p. 49
[103] Journal of Electron Spectroscopy and Related Phenomena, 84 (1997), p. 171
[104] Progress in Surface Science, 70 (2002), p. 187
[105] Journal of Physics — Condensed Matter, 20 (2008), p. 22
[106] Journal of Chemical Physics, 98 (1993), p. 9977
[107] Surface Science, 275 (1992), p. L645
[108] Nature, 412 (2001), p. 517
[109] Surface Science, 480 (2001), p. 97
[110] Journal of Physics — Condensed Matter, 11 (1999), p. 9517
[111] IEEE Journal of Quantum Electronics, 17 (1981), p. 1035
[112] Surface Science, 482 (2001), p. 687
[113] Physical Review Letters, 95 (2005), p. 47601
[114] Nano Letters, 5 (2005), p. 1123
[115] Journal of Physics B — Atomic, Molecular and Optical Physics, 40 (2007) (S259)
[116] Nature, 446 (2007), p. 301
[117] Physical Review B, 73 (2006), p. 5
[118] Surface Science, 601 (2007), p. 4541
[119] Nano Letters, 11 (2011), p. 402
[120] Journal of Applied Physics, 101 (2007), p. 83518
[121] Nano Letters, 8 (2008), p. 935
[122] Nature Photonics, 1 (2007), p. 539
[123] Journal of Chemical Physics, 134 (2011), p. 7
[124] Applied Physics Letters, 96 (2010), p. 3
[125] Journal of Physical Chemistry C, 116 (2012), p. 14591
[126] Applied Physics Letters, 94 (2009), p. 3
[127] Nano Letters, 7 (2007), p. 729
[128] Optics Express, 20 (2012), p. 8974
[129] Physical Review B, 84 (2011), p. 245442
[130] Optics Express, 20 (2012), p. 12877
[131] Physical Review B, 83 (2011), p. 235407
[132] New Journal of Physics, 14 (2012), p. 33030
[133] Physical Review B, 73 (2006), p. 125437
[134] Optics Express, 17 (2009), p. 14235
[135] Applied Physics Letters, 77 (2000), p. 3648
[136] Europhysics Letters, 74 (2006), p. 313
Cited by Sources:
Comments - Policy