[Tout ce que vous avez toujours voulu savoir sur le problème de la constante cosmologique sans jamais avoir osé le demander]
Cet article traite du problème de la constante cosmologique dʼune manière pédagogique aussi bien que technique. Nous passons en revue comment lʼénergie du vide peut être régularisée en espace temps plat et courbe, et comment son calcul peut être compris en termes de diagrammes de Feynman en bulles. En particulier, nous montrons que la valeur correctement renormalisée de lʼénergie de point zéro maintenant (pour une théorie libre) en en fait bien au dessous des 122 ordres de grandeur de lʼénergie critique de lʼunivers. Nous nous concentrons sur le cas des champs scalaires bien que nous considérions le cas des fermions et des bosons de jauge également afin de traiter lʼénergie du vide en supersymétrie. Nous discutons aussi comment la constante cosmologique peut être mesurée cosmologiquement et contrainte par la mesure de lʼorbite des planètes du système solaire ou encore des spectres atomiques. Nous passons aussi en revue pourquoi la mesure du Lamb shift et de lʼeffet Casimir semblent indiquer que les fluctuations quantiques de lʼénergie du vide ne sont pas un artefact du formalisme de la théorie des champs. Nous montrons ensuite comment les expériences sur lʼuniversalité de la chute libre peuvent aider à contraindre les propriétés gravitationnelles de lʼénergie du vide et nous discutons le statut du principe dʼéquivalence faible en mécanique quantique, en particulier lʼexpérience de Colella, Overhauser et Werner ainsi que lʼexpérience de Galilée quantique faite avec une horloge de Salecker–Wigner–Peres. Enfin, nous concluons brièvement avec une discussion sur les différentes solutions au problème de la constante cosmologique qui ont été proposées jusquʼà présent.
This article aims at discussing the cosmological constant problem at a pedagogical but fully technical level. We review how the vacuum energy can be regularized in flat and curved space–time and how it can be understood in terms of Feynman bubble diagrams. In particular, we show that the properly renormalized value of the zero-point energy density today (for a free theory) is in fact far from being 122 orders of magnitude larger than the critical energy density, as often quoted in the literature. We mainly consider the case of scalar fields but also treat the cases of fermions and gauge bosons which allows us to discuss the question of vacuum energy in super-symmetry. Then, we discuss how the cosmological constant can be measured in cosmology and constrained with experiments such as measurements of planet orbits in our solar system or atomic spectra. We also review why the Lamb shift and the Casimir effect seem to indicate that the quantum zero-point fluctuations are not an artifact of the quantum field theory formalism. We investigate how experiments on the universality of free fall can constrain the gravitational properties of vacuum energy and we discuss the status of the weak equivalence principle in quantum mechanics, in particular the Colella, Overhauser and Werner experiment and the quantum Galileo experiment performed with a Salecker–Wigner–Peres clock. Finally, we briefly conclude with a discussion on the solutions to the cosmological constant problem that have been proposed so far.
Mot clés : Problème de la constante cosmologique, Diagrammes de Feynman en bulles, Supersymétrie, Énergie du vide
Jérôme Martin 1
@article{CRPHYS_2012__13_6-7_566_0, author = {J\'er\^ome Martin}, title = {Everything you always wanted to know about the cosmological constant problem (but were afraid to ask)}, journal = {Comptes Rendus. Physique}, pages = {566--665}, publisher = {Elsevier}, volume = {13}, number = {6-7}, year = {2012}, doi = {10.1016/j.crhy.2012.04.008}, language = {en}, }
TY - JOUR AU - Jérôme Martin TI - Everything you always wanted to know about the cosmological constant problem (but were afraid to ask) JO - Comptes Rendus. Physique PY - 2012 SP - 566 EP - 665 VL - 13 IS - 6-7 PB - Elsevier DO - 10.1016/j.crhy.2012.04.008 LA - en ID - CRPHYS_2012__13_6-7_566_0 ER -
Jérôme Martin. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 566-665. doi : 10.1016/j.crhy.2012.04.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.008/
[1] Rev. Mod. Phys., 61 (1989), p. 1
[2] Ann. Rev. Astron. Astrophys., 30 (1992), p. 499
[3] arXiv
, 1997 |[4] Int. J. Mod. Phys. D, 9 (2000), p. 373 | arXiv
[5] Eur. J. Phys., 20 (1999), p. 419 | arXiv
[6] arXiv
, 2000 |[7] Living Rev. Rel., 4 (2001), p. 1 | arXiv
[8] Stud. Hist. Philos. Mod. Phys. (2000) | arXiv
[9] Phys. Rept., 380 (2003), p. 235 | arXiv
[10] arXiv
, 2003 |[11] Special section of current science on the legacy of Albert Einstein, Curr. Sci., Volume 88 (2005), p. 2120
[12] arXiv
, 2006 (pp. 216–236) |[13] Int. J. Mod. Phys. D, 15 (2006), p. 1753 | arXiv
[14] arXiv
, 2009 |[15] Int. J. Mod. Phys. A, 25 (2010), p. 5253 | arXiv
[16] An Introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995
[17] Field Quantization, Springer, Berlin, Germany, 1996
[18] Quantum Field Theory, International Series in Pure and Applied Physics, McGraw-Hill, 1980
[19] Supersymmetric Gauge Field Theory and String Theory, Graduate Student Series in Physics, IOP, 1994
[20] Quantum and Statistical Field Theory, Oxford, 1991
[21] Quantum Field Theory, Cambridge Univ. Press, 1985
[22] Quantum Field Theory, Wiley-Interscience Publication, 1984
[23] Astrophys. J., 517 (1999), p. 565 | arXiv
[24] Astron. J., 116 (1998), p. 1009 | arXiv
[25] Phys. Lett. B, 91 (1980), p. 99
[26] Phys. Rev. D, 23 (1981), p. 347
[27] JETP Lett., 33 (1981), p. 532
[28] Phys. Lett. B, 108 (1982), p. 389
[29] Sov. Phys. JETP, 56 (1982), p. 258
[30] Phys. Lett. B, 117 (1982), p. 175
[31] Phys. Rev. Lett., 49 (1982), p. 1110
[32] Phys. Lett. B, 115 (1982), p. 295 (revised version)
[33] Phys. Rev. Lett., 48 (1982), p. 1220
[34] Phys. Lett. B, 129 (1983), p. 177
[35] Braz. J. Phys., 34 (2004), p. 1307 | arXiv
[36] Lect. Notes Phys., 669 (2005), p. 199 | arXiv
[37] Lect. Notes Phys., 738 (2008), p. 193 | arXiv
[38] et al. Astrophys. J., 396 (1992), p. L1
[39] JCAP, 0608 (2006), p. 009 | arXiv
[40] Observational evidence of the accelerated expansion of the Universe, C. R. Physique, Volume 13 (2012), pp. 521-538 ( in this issue ) | DOI
[41] The phenomenological approach to modeling the dark energy, C. R. Physique, Volume 13 (2012), pp. 539-565 ( in this issue ) | DOI
[42] Establishing homogeneity of the universe in the shadow of dark energy, C. R. Physique, Volume 13 (2012), pp. 682-718 ( in this issue ) | DOI
[43] Galileons in the sky, C. R. Physique, Volume 13 (2012), pp. 666-681 ( in this issue ) | DOI
[44] Sov. Phys. Dokl., 12 (1968), p. 1040
[45] Finite-Temperature Field Theory: Principles and Applications, Cambridge Univ. Press, 2006
[46] arXiv
, 2012 |[47] arXiv
, 2002 |[48] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, US, 1970
[49] Table of Integrals, Series, and Products, Academic Press, New York and London, 1965
[50] Eur. Phys. J. C, 31 (2003), p. 165 (28 pages, 5 figures) | arXiv
[51] arXiv
, 2011 |[52] Phys. Rev., 129 (1963), p. 2786
[53] Quantum Fields in Curved Space, Cambridge Univ. Press, 1982
[54] Phys. Rev., 184 (1969), p. 1231
[55] Lecture Notes (2006) web.mit.edu/tabbott/Public/8.06/current.pdf
[56] MIT Lecture Notes (2011) http://www.teorfys.uu.se/people/minahan/Courses/QFT/wholeshebang.pdf
[57] Quantum Mechanics, Wiley-Interscience, 2006
[58] Phys. Rev. D, 30 (1984), p. 1712
[59] Phys. Rev. D, 32 (1985), p. 1389
[60] Phys. Rev. D, 33 (1986), p. 2305
[61] Z. Phys. C, 35 (1987), p. 467
[62] Phys. Rev. D, 35 (1987), p. 2407
[63] Phys. Lett. B, 176 (1986), p. 436
[64] Phys. Rev. D, 37 (1988), p. 413
[65] Phys. Rev. D, 34 (1986), p. 3117
[66] Z. Phys. C, 70 (1996), p. 307 | arXiv
[67] Phys. Rev. D, 7 (1973), p. 1888
[68] Phys. Rev. D, 36 (1987), p. 2474
[69] J. Math. Phys., 25 (1984), p. 541
[70] Nucl. Phys. B, 70 (1974), p. 39
[71] Phys. Rev., 177 (1969), p. 2239
[72] Phys. Rev., 177 (1969), p. 2247
[73] Phys. Lett. B, 49 (1974), p. 52
[74] , Notes of Lectures for Graduate Students in Particle Physics, Oxford, 2004 and 2005 | arXiv
[75] Supersymmetry: Theory, Experiment and Cosmology, Oxford Univ. Press, 2006
[76] L. Parker, in: Cargese 1978, Proceedings, Recent Developments in Gravitation, 1978, pp. 219–273.
[77] Phys. Rev. D, 20 (1979), p. 2499
[78] Living Rev. Rel., 14 (2011) no. 7 | arXiv
[79] arXiv
, 2003 |[80] arXiv
, 2004 |[81] Astrophys. J. Suppl., 170 (2007), p. 377 | arXiv
[82] Phys. Rev. D, 69 (2004), p. 103501 | arXiv
[83] The Early Universe, Frontiers in Physics Series, vol. 69, Addison-Wesley Publishing Company, 1990
[84] Phys. Rev. D, 37 (1988), p. 3406
[85] Phys. Lett. B, 468 (1999), p. 40 | arXiv
[86] Phys. Rev. D, 61 (2000), p. 103502 | arXiv
[87] Phys. Rev. D, 62 (2000), p. 103505 | arXiv
[88] Phys. Rev. D, 64 (2001), p. 083505 | arXiv
[89] Phys. Rev. D, 71 (2005), p. 063514 | arXiv
[90] Phys. Rev. Lett., 96 (2006), p. 061303 | arXiv
[91] Phys. Lett. B, 647 (2007), p. 320 | arXiv
[92] JCAP, 0611 (2006), p. 008 | arXiv
[93] Phys. Rev. D, 75 (2007), p. 083507 | arXiv
[94] JCAP, 0909 (2009), p. 032 | arXiv
[95] Phys. Lett. B, 458 (1999), p. 197 | arXiv
[96] Phys. Rev. Lett., 81 (1998), p. 3067 | arXiv
[97] arXiv
, 2002 |[98] Lect. Notes Phys., 646 (2004), p. 273
[99] Phys. Rev. D, 74 (2006), p. 043009 | arXiv
[100] Phys. Rev. Lett., 105 (2010), p. 121301 | arXiv
[101] Phys. Rev. Lett., 86 (2001), p. 6 | arXiv
[102] Gravitation and Cosmology, John Wiley & Sons, 1972
[103] arXiv
, 1998 |[104] Class. Quant. Grav., 20 (2003), p. 2727 | arXiv
[105] arXiv
, 2007 |[106] Phys. Rev. D, 22 (1980), p. 1922
[107] Phys. Rev. D, 25 (1982), p. 3180
[108] Phys. Rev. D, 24 (1981), p. 535
[109] Gen. Rel. Grav., 42 (2010), p. 435
[110] Phys. Rev. D, 23 (1981), p. 2157
[111] Phys. Rev. D, 74 (2006), p. 125014 | arXiv
[112] Phys. Rev., 74 (1948), p. 1157
[113] Phys. Rept., 134 (1986), p. 87
[114] J. Phys. A, 37 (2004), p. R209 | arXiv
[115] arXiv
, 2000 (pp. 333–349) |[116] Lect. Notes Phys., 834 (2011), p. 39 | arXiv
[117] arXiv
, 2011 |[118] Phys. Rev. D, 68 (2003), p. 065020 | arXiv
[119] Phys. Rev. D, 20 (1979), p. 3063
[120] Phys. Rev. A, 45 (1992), p. 4241
[121] Phys. Rev. D, 72 (2005), p. 021301 | arXiv
[122] arXiv
, 2012 |[123] Phys. Lett. A, 297 (2002), p. 328 | arXiv
[124] Phys. Rev. D, 76 (2007), p. 025008 | arXiv
[125] et al. Phys. Rev. D, 76 (2007), p. 025004 | arXiv
[126] et al. J. Phys. A, 41 (2008), p. 164052 | arXiv
[127] et al., 2008 | arXiv
[128] arXiv
, 2002 |[129] Class. Quant. Grav., 22 (2005), p. 5109
[130] Phys. Lett. B, 679 (2009), p. 433 | arXiv
[131] et al. Phys. Rev. D, 50 (1994), p. 3614
[132] Space Sci. Rev. (2009) | arXiv
[133] Phys. Rev. Lett., 34 (1975), p. 1472
[134] Rev. Mod. Phys., 51 (1979), p. 43
[135] Rev. Mod. Phys., 55 (1983), p. 875
[136] Phys. Rev., 109 (1958), p. 571
[137] Am. J. Phys., 48 (1980), p. 552
[138] Solid Sate Commun., 86 (1993), p. 781
[139] Class. Quant. Grav., 21 (2004), p. 5677
[140] Class. Quant. Grav., 21 (2004), p. 2761 | arXiv
[141] Phys. Rev. A, 54 (1996), p. 4679 | arXiv
[142] Phys. Rev. A, 57 (1998), p. 4130 | arXiv
[143] Phys. Rev. A, 59 (1999), p. 1804 | arXiv
[144] Am. J. Phys., 73 (2005), p. 23
[145] arXiv
, 2011 (e-prints) |[146] Phys. Rev. D, 55 (1997), p. 455 | arXiv
[147] Class. Quant. Grav., 23 (2006), p. 6493 | arXiv
[148] et al. Class. Quant. Grav., 29 (2012), p. 025010
[149] Int. J. Mod. Phys. A, 25 (2010), p. 2260 | arXiv
[150] arXiv
, 2011 |[151] Appl. Phys. B, 100 (2010), p. 43 | arXiv
[152] et al. Phys. Rev. D, 67 (2003), p. 102002 | arXiv
[153] et al. AIP Conf. Proc., 842 (2006), p. 793
[154] S. Nobbenhuis, Ph.D. thesis, 2006, gr-qc/0609011 (Advisor: G. ʼt Hooft).
[155] The Very Early Universe (G. Gibbons; S.W. Hawking; S.T. Tiklos, eds.), Cambridge University Press, Cambridge, England, 1982
[156] Phys. Rev. D, 35 (1987), p. 2339
[157] Phys. Rev. D, 77 (2008), p. 083503 | arXiv
[158] Phys. Rev. D, 56 (1997), p. 3248 | arXiv
[159] Phys. Rev. Lett., 78 (1997), p. 1624 | arXiv
[160] Phys. Rev. D, 28 (1983), p. 2960
[161] Phys. Lett. B, 133 (1983), p. 185
[162] Nucl. Phys. B, 310 (1988), p. 643
[163] Phys. Lett. B, 125 (1983), p. 139
[164] Annals Phys., 313 (2004), p. 283 (paper has been updated to include developments since the conference) | arXiv
[165] A First Course in String Theory, Cambridge Univ. Press, 2004
[166] Phys. Rev. Lett., 59 (1987), p. 2607
[167] JCAP, 1009 (2010), p. 008 | arXiv
[168] Phys. Rev. Lett., 97 (2006), p. 201301 | arXiv
[169] AIP Conf. Proc., 878 (2006), p. 323 | arXiv
[170] arXiv
, 2008 |[171] Class. Quant. Grav., 28 (2011), p. 225007 | arXiv
[172] Phys. Rev. D, 84 (2011), p. 103522 | arXiv
[173] Phys. Rept., 351 (2001), p. 195 | arXiv
[174] Annalen Phys., 14 (2005), p. 165 | arXiv
[175] arXiv
, 2011 (invited review for SIGMA Special Issue ‘Loop Quantum Gravity and Cosmology’, 54 pages) |[176] arXiv
, 2001 |[177] Int. Ser. Monogr. Phys., 117 (2006), p. 1
[178] Found. Phys., 38 (2008), p. 1148 | arXiv
[179] Phys. Rev. Lett., 108 (2012), p. 071101 (5 pages, 1 figures) | arXiv
[180] arXiv
, 2012 |Cité par Sources :
Commentaires - Politique