In this mini-review we discuss first why we should investigate cosmological models beyond ΛCDM. We then show how to describe dark energy or modified gravity models in a fluid language with the help of one background and two perturbation quantities. We review a range of dark energy models and study how they fit into the phenomenological framework, including generalizations like phantom crossing, sound speeds different from c and non-zero anisotropic stress, and how these effective quantities are linked to the underlying physical models. We also discuss the limits of what can be measured with cosmological data, and some challenges for the framework.
Dans cet article de revue nous discutons pourquoi il est intéressant de considérer la cosmologie au delà du modèle de concordance. Nous montrons ensuite comment décrire lʼénergie noire ou la gravité modifiée en utilisant une description de type fluide avec un paramètre pour le fond cosmologique et deux paramètres de perturbation. Nous passons en revue un certain nombre de modèles dʼénergie noire et étudions comment ils sʼincorporent dans lʼapproche phénoménologique prise ici. Nous considérons des généralisations comme une transition vers une équation dʼétat de type fantôme, une vitesse du son différente de c et un tenseur des contraintes non-isotrope. Nous montrons ensuite comment ces quantités sont lies aux modèles physiques sous-jacents. Nous discutons en fin les limitations des mesures cosmologiques et certains challenges futurs.
Mot clés : Cosmologie, Énergie noire, Relativité générale, Constante cosmologique, Théorie des perturbations cosmologique
Martin Kunz 1
@article{CRPHYS_2012__13_6-7_539_0, author = {Martin Kunz}, title = {The phenomenological approach to modeling the dark energy}, journal = {Comptes Rendus. Physique}, pages = {539--565}, publisher = {Elsevier}, volume = {13}, number = {6-7}, year = {2012}, doi = {10.1016/j.crhy.2012.04.007}, language = {en}, }
Martin Kunz. The phenomenological approach to modeling the dark energy. Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 539-565. doi : 10.1016/j.crhy.2012.04.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.007/
[1] et al. Euclid definition study report, 2011 | arXiv
[2] The field equations of gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), Volume 1915 (1915), pp. 844-847
[3] Cosmological considerations in the general theory of relativity, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), Volume 1917 (1917), pp. 142-152
[4] et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., Volume 116 (1998), pp. 1009-1038
[5] et al. Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J., Volume 517 (1999), pp. 565-586
[6] The cosmological constant, Living Rev. Rel., Volume 4 (2001) no. 1
[7] Dynamics of dark energy, Int. J. Mod. Phys. D, Volume 15 (2006), pp. 1753-1936
[8] Dark energy and modified gravity, 2008 | arXiv
[9] Gif lectures on cosmic acceleration, 2009 | arXiv
[10] Cosmological tests of gravity, Ann. Phys., Volume 325 (2010), pp. 1479-1516
[11] Dark energy in practice, Int. J. Mod. Phys. A, Volume 25 (2010), pp. 5253-5331
[12] Modified gravity and cosmology, 2011 | arXiv
[13] Dark Energy: Theory and Observations, Cambridge University Press, 2010
[14] Observational evidence of the accelerated expansion of the universe, C. R. Physique, Volume 13 (2012), pp. 521-538 (in this issue) | DOI
[15] Everything you always wanted to know about the cosmological constant (but were afraid to ask), C. R. Physique, Volume 13 (2012), pp. 566-665 (in this issue) | DOI
[16] Establishing homogeneity of the universe in the shadow of dark energy, C. R. Physique, Volume 13 (2012), pp. 682-718 (in this issue) | DOI
[17] Galileons in the sky, C. R. Physique, Volume 13 (2012), pp. 666-681 (in this issue) | DOI
[18] On the definition of distance in general relativity, Philos. Mag., Volume 15 (1933), p. 761
[19] Cosmic distance-duality as a probe of exotic physics and acceleration, Phys. Rev. D, Volume 69 (2004), p. 101305
[20] Cosmic acceleration versus axion-photon mixing, Astrophys. J., Volume 607 ( June 2004 ), pp. 661-664
[21] The distance duality relation from x-ray and SZ observations of clusters, Phys. Rev. D, Volume 70 (2004), p. 083533
[22] Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements, JCAP, Volume 1010 (2010), p. 024
[23] A tale of two distances, 2004 | arXiv
[24] et al. (Mis-)Interpreting supernovae observations in a lumpy universe, 2011 | arXiv
[25] Early dark energy from zero-point quantum fluctuations, Phys. Lett. B, Volume 704 (2011), pp. 102-107
[26] Zero-point quantum fluctuations in cosmology, 2011 | arXiv
[27] Cosmological Inflation and Large-Scale Structure, Cambridge University Press, 2000 (ISBN: 978-0521575980)
[28] et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl., Volume 192 (2011), p. 18
[29] A dark energy view of inflation, Phys. Rev. D, Volume 81 (2010), p. 103502
[30] On average properties of inhomogeneous fluids in general relativity. 1. Dust cosmologies, Gen. Rel. Grav., Volume 32 (2000), pp. 105-125
[31] Dark energy from backreaction, JCAP, Volume 0402 (2004), p. 003
[32] Accelerated expansion from structure formation, JCAP, Volume 0611 (2006), p. 003
[33] Dark energy from structure: A status report, Gen. Rel. Grav., Volume 40 (2008), pp. 467-527
[34] Redshift and structure formation in a spatially flat inhomogeneous universe, Phys. Rev. D, Volume 45 (1992), pp. 3512-3522
[35] A local void and the accelerating universe, Mon. Not. Roy. Astron. Soc., Volume 326 (2001), p. 287
[36] Do we really see a cosmological constant in the supernovae data?, Astron. Astrophys., Volume 353 (2000), pp. 63-71
[37] Nonlinear structure formation and apparent acceleration: An investigation, JCAP, Volume 0712 (2007), p. 017
[38] Confronting Lemaitre–Tolman–Bondi models with observational cosmology, JCAP, Volume 0804 (2008), p. 003
[39] Inhomogeneity and the foundations of concordance cosmology, Class. Quant. Grav., Volume 27 (2010), p. 124008 (26 pages and 1 figure. Invited review article for the CQG special issue on nonlinear cosmological perturbations. V2 has additional refs and comments, minor errors corrected, version in CQG)
[40] Testing backreaction effects with observations, Phys. Rev. D, Volume 79 (2009), p. 083011
[41] Do we live in the center of the world?, Phys. Lett. B, Volume 345 (1995), pp. 203-210
[42] Mapping the dark energy with varying alpha, Phys. Lett. B, Volume 578 (2004), pp. 235-240
[43] Varying constants, gravitation and cosmology, Living Rev. Rel., Volume 14 (2011) no. 2
[44] Probing the dark energy: Methods and strategies, Phys. Rev. D, Volume 64 (2001), p. 123527
[45] Limitations in using luminosity distance to determine the equation of state of the universe, Phys. Rev. Lett., Volume 86 (2001), p. 6
[46] Opportunities for future supernova studies of cosmic acceleration, Phys. Rev. Lett., Volume 86 (2001), pp. 1939-1942
[47] Accelerating universes with scaling dark matter, Int. J. Mod. Phys. D, Volume 10 (2001), pp. 213-224
[48] Exploring the expansion history of the universe, Phys. Rev. Lett., Volume 90 (2003), p. 091301
[49] A Model independent approach to the dark energy equation of state, Phys. Rev. D, Volume 67 (2003), p. 063521
[50] What can be learned about dark energy evolution?, Astron. Astrophys., Volume 488 (2008), pp. 47-53 | DOI
[51] A late time transition in the cosmic dark energy?, Mon. Not. Roy. Astron. Soc., Volume 336 (2002), pp. 1217-1222
[52] The essence of quintessence and the cost of compression, Astrophys. J., Volume 617 (2004), p. L1-L4
[53] Parameterization of dark-energy properties: A principal-component approach, Phys. Rev. Lett., Volume 90 (2003), p. 031301
[54] et al. Nonparametric dark energy reconstruction from supernova data, Phys. Rev. Lett., Volume 105 (2010), p. 241302
[55] Measuring time dependence of dark energy density from type Ia supernova data, Astrophys. J., Volume 552 (2001), p. 445
[56] Measuring the metric: A parametrized postFriedmanian approach to the cosmic dark energy problem, Phys. Rev. D, Volume 66 (2002), p. 103507
[57] A model-independent determination of the expansion and acceleration rates of the universe as a function of redshift and constraints on dark energy, Astrophys. J., Volume 597 (2003), pp. 9-20
[58] Constraining the dark fluid, Phys. Rev. D, Volume 80 (2009), p. 083533
[59] et al. Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J., Volume 686 (2008), pp. 749-778
[60] Observational constraints on dark energy and cosmic curvature, Phys. Rev. D, Volume 76 (2007), p. 103533
[61] et al. Baryon acoustic oscillations in the Sloan digital sky survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc., Volume 401 (2010), pp. 2148-2168
[62] et al. A redetermination of the Hubble constant with the Hubble space telescope from a differential distance ladder, Astrophys. J., Volume 699 (2009), pp. 539-563
[63] Cosmological perturbation theory, Prog. Theor. Phys. Suppl., Volume 78 (1984), pp. 1-166
[64] Gauge invariant cosmological perturbation theory: A general study and its application to the texture scenario of structure formation, Fund. Cosmic Phys., Volume 15 (1994), p. 209
[65] Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J., Volume 455 (1995), pp. 7-25
[66] Covariant linear perturbation formalism, 2004 | arXiv
[67] Cosmological perturbations, Phys. Rep., Volume 475 (2009), pp. 1-51
[68] The end of unified dark matter?, Phys. Rev. D, Volume 69 (2004), p. 123524
[69] Are Chaplygin gases serious contenders to the dark energy throne?, Phys. Rev. D, Volume 68 (2003), p. 023515
[70] Nonlinear cosmological consistency relations and effective matter stresses, 2011 | arXiv
[71] Measuring the dark side (with weak lensing), JCAP, Volume 0804 (2008), p. 013
[72] et al. Testing general relativity with current cosmological data, Phys. Rev. D, Volume 81 (2010), p. 123508
[73] Current constraints on the cosmic growth history, Phys. Rev. D, Volume 81 (2010), p. 083534
[74] The linear growth rate of structure in parametrized post Friedmannian universes, Phys. Rev. D, Volume 81 (2010), p. 104020
[75] How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations?, Phys. Rev. D, Volume 81 (2010), p. 104023
[76] et al. Probing modifications of general relativity using current cosmological observations, Phys. Rev. D, Volume 81 (2010), p. 103510
[77] Confronting general relativity with further cosmological data, Phys. Rev. D, Volume 82 (2010), p. 103523
[78] A parameterized post-Friedmann framework for modified gravity, Phys. Rev. D, Volume 76 (2007), p. 104043
[79] Structure formation with generalized dark matter, Astrophys. J., Volume 506 (1998), pp. 485-494
[80] Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., Volume 80 (1998), pp. 1582-1585
[81] Cosmology and the fate of dilatation symmetry, Nucl. Phys. B, Volume 302 (1988), p. 668
[82] Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, Volume 37 (1988), p. 3406
[83] Crossing the phantom divide, Phys. Rev. D, Volume 74 (2006), p. 123503
[84] Prospects for probing the dark energy via supernova distance measurements, Phys. Rev. D, Volume 60 (1999), p. 081301
[85] Reconstructing the cosmic equation of state from supernova distances, Phys. Rev. Lett., Volume 85 (2000), pp. 1162-1165
[86] Direct reconstruction of the quintessence potential, Phys. Rev. D, Volume 72 (2005), p. 083511
[87] Kinetically driven quintessence, Phys. Rev. D, Volume 62 (2000), p. 023511
[88] A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett., Volume 85 (2000), pp. 4438-4441
[89] A no-go theorem for k-essence dark energy, Phys. Rev. Lett., Volume 97 (2006), p. 081303
[90] Superluminal motion and closed signal curves, 2007 | arXiv
[91] k-Essence, superluminal propagation, causality and emergent geometry, JHEP, Volume 0802 (2008), p. 101
[92] Can the dark energy equation of state parameter w be less than −1?, Phys. Rev. D, Volume 68 (2003), p. 023509
[93] Imperfect dark energy from kinetic gravity braiding, JCAP, Volume 1010 (2010), p. 026
[94] The effective theory of quintessence: the side unveiled, JCAP, Volume 0902 (2009), p. 018
[95] Dust of dark energy, JCAP, Volume 1005 (2010), p. 012
[96] Dark energy constraints from the cosmic age and supernova, Phys. Lett. B, Volume 607 (2005), pp. 35-41
[97] Crossing the phantom divide: Dark energy internal degrees of freedom, Phys. Rev. D, Volume 71 (2005), p. 047301
[98] Fingerprinting dark energy, Phys. Rev. D, Volume 80 (2009), p. 083519
[99] Fingerprinting dark energy II: Weak lensing and galaxy clustering tests, Phys. Rev. D, Volume 82 (2010), p. 103535
[100] Measuring the speed of dark: Detecting dark energy perturbations, Phys. Rev. D, Volume 81 (2010), p. 103513
[101] Dark energy with non-adiabatic sound speed: initial conditions and detectability, JCAP, Volume 1010 (2010), p. 014
[102] Constraining dark energy with SNe Ia and large scale structure, Phys. Rev. Lett., Volume 83 (1999), pp. 670-673
[103] Constraining the Quintessence equation of state with SnIa data and CMB peaks, Phys. Rev. D, Volume 65 (2002), p. 043004
[104] Large scale cosmic microwave background anisotropies and dark energy, Mon. Not. Roy. Astron. Soc., Volume 346 (2003), pp. 987-993
[105] Constraints on flat cosmologies with tracking quintessence from cosmic microwave background observations, Phys. Rev. D, Volume 65 (2002), p. 063520
[106] Current constraints on the dark energy equation of state, Phys. Rev. D, Volume 65 (2002), p. 041302
[107] Condensate cosmology – Dark energy from dark matter, Phys. Rev. D, Volume 68 (2003), p. 043504
[108] Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP, Phys. Rev. D, Volume 69 (2004), p. 083503
[109] Model-independent dark energy test with sigma(8) using results from the Wilkinson microwave anisotropy probe, Phys. Rev. D, Volume 70 (2004), p. 041301 (reviewed in Nature, 431, 2004, pp. 519)
[110] The foundations of observing dark energy dynamics with the Wilkinson microwave anisotropy probe, Phys. Rev. D, Volume 70 (2004), p. 083006
[111] A Line of sight integration approach to cosmic microwave background anisotropies, Astrophys. J., Volume 469 (1996), pp. 437-444
[112] Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., Volume 538 (2000), pp. 473-476
[113] How many cosmological parameters?, Mon. Not. Roy. Astron. Soc., Volume 351 (2004), p. L49-L53
[114] Revealing the nature of dark energy using Bayesian evidence, Mon. Not. Roy. Astron. Soc., Volume 348 (2004), p. 603
[115] Applications of Bayesian model selection to cosmological parameters, Mon. Not. Roy. Astron. Soc., Volume 378 (2007), pp. 72-82
[116] Measuring the effective complexity of cosmological models, Phys. Rev. D, Volume 74 (2006), p. 023503
[117] Probability Theory, Cambridge University Press, 2003
[118] An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons Inc., New York, 1968
[119] An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons Inc., New York, 1971
[120] Equation of state calculations by fast computing machines, J. Chem. Phys., Volume 21 (1953), pp. 1087-1092
[121] Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D, Volume 66 (2002), p. 103511
[122] CosmoMC notes http://cosmologist.info/notes/CosmoMC.pdf
[123] Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003
[124] Nested sampling (R. Fischer; R. Preuss; U.V. Toussaint, eds.), Am. Inst. Phys. Conf. Proc., vol. 735, November 2004 , pp. 395-405
[125] A nested sampling algorithm for cosmological model selection, Astrophys. J., Volume 638 (2006), p. L51-L54
[126] Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc., Volume 384 (2008), p. 449
[127] et al. Estimation of cosmological parameters using adaptive importance sampling, Phys. Rev. D, Volume 80 (2009), p. 023507
[128] et al. Spectra and light curves of six type Ia supernovae at and the Union2 compilation, Astrophys. J., Volume 716 (2010), pp. 712-738
[129] et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Power spectra and WMAP-derived parameters, Astrophys. J. Suppl., Volume 192 (2011), p. 16
[130] Reconstructing the history of dark energy using maximum entropy, Mon. Not. Roy. Astron. Soc., Volume 380 (2007), p. 865
[131] Luca Amendola, Martin Kunz, Ippocratis Saltas, Ignacy Sawicki, All you can know about dark energy, in preparation.
[132] Modified gravity tomography, 2011 | arXiv
[133] Modified gravity models of dark energy, Lect. Notes Phys., Volume 800 (2010), pp. 99-145
[134] 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, Volume 485 (2000), pp. 208-214
[135] Anisotropic stress and stability in modified gravity models, Phys. Rev. D, Volume 83 (2011), p. 064042
[136] Vacuum structure for scalar cosmological perturbations in modified gravity models, JCAP, Volume 0906 (2009), p. 034
[137] Avoiding dark energy with modifications of gravity, Lect. Notes Phys., Volume 720 (2007), pp. 403-433
[138] Observational constraints on self-accelerating cosmology, Phys. Rev. D, Volume 74 (2006), p. 023004
[139] Probing Newtonʼs constant on vast scales: DGP gravity, cosmic acceleration and large scale structure, Phys. Rev. D, Volume 69 (2004), p. 124015
[140] Structure formation in the dgp cosmological model, JCAP, Volume 0601 (2006), p. 016
[141] Second-order scalar–tensor field equations in a four-dimensional space, Int. J. Theor. Phys., Volume 10 (1974), pp. 363-384 | DOI
[142] The Galileon as a local modification of gravity, Phys. Rev. D, Volume 79 (2009), p. 064036
[143] Generalization of the Fierz–Pauli action, Phys. Rev. D, Volume 82 (2010), p. 044020
[144] General second order scalar–tensor theory, self tuning, and the Fab Four, 2011 | arXiv
[145] Conditions for the cosmological viability of the most general scalar–tensor theories and their applications to extended Galileon dark energy models, 2011 | arXiv
[146] Galilean-invariant scalar fields can strengthen gravitational lensing, Phys. Rev. Lett., Volume 106 (2011), p. 201102
[147] Constraints on a new post-general relativity cosmological parameter, Phys. Rev. D, Volume 76 (2007), p. 023507
[148] Distinguishing modified gravity from dark energy, Phys. Rev. D, Volume 78 (2008), p. 024015
[149] Consistency test of general relativity from large scale structure of the universe, JCAP, Volume 0901 (2009), p. 048
[150] Theoretical priors on modified growth parametrisations, JCAP, Volume 1004 (2010), p. 018
[151] et al. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity, Phys. Rev. D, Volume 84 (2011), p. 083523
[152] Testing gravity with CAMB and CosmoMC, JCAP, Volume 1108 (2011), p. 005
[153] Towards a fully consistent parameterization of modified gravity, Phys. Rev. D, Volume 84 (2011), p. 124018
[154] et al. Testing Einstein gravity with cosmic growth and expansion, 2011 | arXiv
[155] Ambiguous tests of general relativity on cosmological scales, 2011 | arXiv
[156] et al. Cosmology and fundamental physics with the Euclid satellite: Review document of the Euclid Theory Working Group | arXiv
[157] The dark degeneracy: On the number and nature of dark components, Phys. Rev. D, Volume 80 (2009), p. 123001
[158] The structure of structure formation theories, Phys. Rev. D, Volume 59 (1999), p. 083509
[159] Why we need to see the dark matter to understand the dark energy, J. Phys. Conf. Ser., Volume 110 (2008), p. 062014
[160] et al. The supernova legacy survey: Measurement of omega(m), omega(lambda) and W from the first year data set, Astron. Astrophys., Volume 447 (2006), pp. 31-48
[161] et al. Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl., Volume 170 (2007), p. 377
[162] Phantom crossing, equation-of-state singularities, and local gravity constraints in models, Phys. Lett. B, Volume 660 (2008), pp. 125-132
[163] Interacting quintessence. The coincidence problem and cosmic acceleration, Phys. Rev. D, Volume 74 (2006), p. 023519
[164] Super-acceleration as signature of dark sector interaction, Phys. Rev. D, Volume 73 (2006), p. 083509
[165] Non-parametric dark energy degeneracies, 2008 | arXiv
[166] Dynamical dark energy or simply cosmic curvature?, JCAP, Volume 0708 (2007), p. 011
[167] A general test of the Copernican Principle, Phys. Rev. Lett., Volume 101 (2008), p. 011301
[168] Covariant cosmic microwave background anisotropies. 2. Nonlinear dynamics, Phys. Rev. D, Volume 59 (1999), p. 083506
[169] To the problem of nonvanishing gravitation mass, Phys. Lett. B, Volume 39 (1972), pp. 393-394
[170] Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett., Volume 93 (2004), p. 171104
[171] Detecting dark energy in orbit – The cosmological chameleon, Phys. Rev. D, Volume 70 (2004), p. 123518
[172] Models of cosmic acceleration that evade solar-system tests, Phys. Rev. D, Volume 76 (2007), p. 064004
[173] Testing general relativity using the environmental dependence of dark matter halos, Phys. Rev. Lett., Volume 107 (2011), p. 071303
[174] Time drift of cosmological redshifts as a test of the Copernican principle, Phys. Rev. Lett., Volume 100 (2008), p. 191303
[175] General relativistic description of the observed galaxy power spectrum: Do we understand what we measure?, Phys. Rev. D, Volume 82 (2010), p. 083508
[176] What galaxy surveys really measure, Phys. Rev. D, Volume 84 (2011), p. 063505
[177] The linear power spectrum of observed source number counts, Phys. Rev. D, Volume 84 (2011), p. 043516
[178] Large-scale clustering of galaxies in general relativity, 2011 | arXiv
Cited by Sources:
Comments - Policy