Comptes Rendus
The phenomenological approach to modeling the dark energy
[Une approche phénoménologique de lʼénergie noire]
Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 539-565.

Dans cet article de revue nous discutons pourquoi il est intéressant de considérer la cosmologie au delà du modèle de concordance. Nous montrons ensuite comment décrire lʼénergie noire ou la gravité modifiée en utilisant une description de type fluide avec un paramètre pour le fond cosmologique et deux paramètres de perturbation. Nous passons en revue un certain nombre de modèles dʼénergie noire et étudions comment ils sʼincorporent dans lʼapproche phénoménologique prise ici. Nous considérons des généralisations comme une transition vers une équation dʼétat de type fantôme, une vitesse du son différente de c et un tenseur des contraintes non-isotrope. Nous montrons ensuite comment ces quantités sont lies aux modèles physiques sous-jacents. Nous discutons en fin les limitations des mesures cosmologiques et certains challenges futurs.

In this mini-review we discuss first why we should investigate cosmological models beyond ΛCDM. We then show how to describe dark energy or modified gravity models in a fluid language with the help of one background and two perturbation quantities. We review a range of dark energy models and study how they fit into the phenomenological framework, including generalizations like phantom crossing, sound speeds different from c and non-zero anisotropic stress, and how these effective quantities are linked to the underlying physical models. We also discuss the limits of what can be measured with cosmological data, and some challenges for the framework.

Publié le :
DOI : 10.1016/j.crhy.2012.04.007
Keywords: Cosmology, Dark energy, General relativity, Cosmological constant, Cosmological perturbation theory
Mot clés : Cosmologie, Énergie noire, Relativité générale, Constante cosmologique, Théorie des perturbations cosmologique

Martin Kunz 1

1 Département de physique théorique and Center for Astroparticle Physics, université de Genève, quai E. Ansermet 24, CH-1211 Genève 4, Switzerland
@article{CRPHYS_2012__13_6-7_539_0,
     author = {Martin Kunz},
     title = {The phenomenological approach to modeling the dark energy},
     journal = {Comptes Rendus. Physique},
     pages = {539--565},
     publisher = {Elsevier},
     volume = {13},
     number = {6-7},
     year = {2012},
     doi = {10.1016/j.crhy.2012.04.007},
     language = {en},
}
TY  - JOUR
AU  - Martin Kunz
TI  - The phenomenological approach to modeling the dark energy
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 539
EP  - 565
VL  - 13
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.04.007
LA  - en
ID  - CRPHYS_2012__13_6-7_539_0
ER  - 
%0 Journal Article
%A Martin Kunz
%T The phenomenological approach to modeling the dark energy
%J Comptes Rendus. Physique
%D 2012
%P 539-565
%V 13
%N 6-7
%I Elsevier
%R 10.1016/j.crhy.2012.04.007
%G en
%F CRPHYS_2012__13_6-7_539_0
Martin Kunz. The phenomenological approach to modeling the dark energy. Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 539-565. doi : 10.1016/j.crhy.2012.04.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.007/

[1] R. Laureijs; J. Amiaux; S. Arduini; J.-L. Augueres et al. Euclid definition study report, 2011 | arXiv

[2] A. Einstein The field equations of gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), Volume 1915 (1915), pp. 844-847

[3] A. Einstein Cosmological considerations in the general theory of relativity, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), Volume 1917 (1917), pp. 142-152

[4] Adam G. Riess et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., Volume 116 (1998), pp. 1009-1038

[5] S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J., Volume 517 (1999), pp. 565-586

[6] Sean M. Carroll The cosmological constant, Living Rev. Rel., Volume 4 (2001) no. 1

[7] Edmund J. Copeland; M. Sami; Shinji Tsujikawa Dynamics of dark energy, Int. J. Mod. Phys. D, Volume 15 (2006), pp. 1753-1936

[8] Ruth Durrer; Roy Maartens Dark energy and modified gravity, 2008 | arXiv

[9] Philippe Brax Gif lectures on cosmic acceleration, 2009 | arXiv

[10] Bhuvnesh Jain; Justin Khoury Cosmological tests of gravity, Ann. Phys., Volume 325 (2010), pp. 1479-1516

[11] Domenico Sapone Dark energy in practice, Int. J. Mod. Phys. A, Volume 25 (2010), pp. 5253-5331

[12] Timothy Clifton; Pedro G. Ferreira; Antonio Padilla; Constantinos Skordis Modified gravity and cosmology, 2011 | arXiv

[13] L. Amendola; S. Tsujikawa Dark Energy: Theory and Observations, Cambridge University Press, 2010

[14] Pierre Astier; Reynald Pain Observational evidence of the accelerated expansion of the universe, C. R. Physique, Volume 13 (2012), pp. 521-538 (in this issue) | DOI

[15] Jérôme Martin Everything you always wanted to know about the cosmological constant (but were afraid to ask), C. R. Physique, Volume 13 (2012), pp. 566-665 (in this issue) | DOI

[16] Chris Clarkson Establishing homogeneity of the universe in the shadow of dark energy, C. R. Physique, Volume 13 (2012), pp. 682-718 (in this issue) | DOI

[17] Claudia de Rham Galileons in the sky, C. R. Physique, Volume 13 (2012), pp. 666-681 (in this issue) | DOI

[18] I.M.H. Etherington On the definition of distance in general relativity, Philos. Mag., Volume 15 (1933), p. 761

[19] Bruce A. Bassett; Martin Kunz Cosmic distance-duality as a probe of exotic physics and acceleration, Phys. Rev. D, Volume 69 (2004), p. 101305

[20] B.A. Bassett; M. Kunz Cosmic acceleration versus axion-photon mixing, Astrophys. J., Volume 607 ( June 2004 ), pp. 661-664

[21] Jean-Philippe Uzan; Nabila Aghanim; Yannick Mellier The distance duality relation from x-ray and SZ observations of clusters, Phys. Rev. D, Volume 70 (2004), p. 083533

[22] Anastasios Avgoustidis; Clare Burrage; Javier Redondo; Licia Verde; Raul Jimenez Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements, JCAP, Volume 1010 (2010), p. 024

[23] Martin Kunz; Bruce A. Bassett A tale of two distances, 2004 | arXiv

[24] Chris Clarkson; George Ellis; Andreas Faltenbacher; Roy Maartens; Obinna Umeh et al. (Mis-)Interpreting supernovae observations in a lumpy universe, 2011 | arXiv

[25] Michele Maggiore; Lukas Hollenstein; Maud Jaccard; Ermis Mitsou Early dark energy from zero-point quantum fluctuations, Phys. Lett. B, Volume 704 (2011), pp. 102-107

[26] Lukas Hollenstein; Maud Jaccard; Michele Maggiore; Ermis Mitsou Zero-point quantum fluctuations in cosmology, 2011 | arXiv

[27] Andrew R. Liddle; David H. Lyth Cosmological Inflation and Large-Scale Structure, Cambridge University Press, 2000 (ISBN: 978-0521575980)

[28] E. Komatsu et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl., Volume 192 (2011), p. 18

[29] Stephane Ilic; Martin Kunz; Andrew R. Liddle; Joshua A. Frieman A dark energy view of inflation, Phys. Rev. D, Volume 81 (2010), p. 103502

[30] Thomas Buchert On average properties of inhomogeneous fluids in general relativity. 1. Dust cosmologies, Gen. Rel. Grav., Volume 32 (2000), pp. 105-125

[31] Syksy Rasanen Dark energy from backreaction, JCAP, Volume 0402 (2004), p. 003

[32] Syksy Rasanen Accelerated expansion from structure formation, JCAP, Volume 0611 (2006), p. 003

[33] Thomas Buchert Dark energy from structure: A status report, Gen. Rel. Grav., Volume 40 (2008), pp. 467-527

[34] J.W. Moffat; D.C. Tatarski Redshift and structure formation in a spatially flat inhomogeneous universe, Phys. Rev. D, Volume 45 (1992), pp. 3512-3522

[35] Kenji Tomita A local void and the accelerating universe, Mon. Not. Roy. Astron. Soc., Volume 326 (2001), p. 287

[36] Marie-Noelle Celerier Do we really see a cosmological constant in the supernovae data?, Astron. Astrophys., Volume 353 (2000), pp. 63-71

[37] Tirthabir Biswas; Reza Mansouri; Alessio Notari Nonlinear structure formation and apparent acceleration: An investigation, JCAP, Volume 0712 (2007), p. 017

[38] Juan Garcia-Bellido; Troels Haugboelle Confronting Lemaitre–Tolman–Bondi models with observational cosmology, JCAP, Volume 0804 (2008), p. 003

[39] Chris Clarkson; Roy Maartens Inhomogeneity and the foundations of concordance cosmology, Class. Quant. Grav., Volume 27 (2010), p. 124008 (26 pages and 1 figure. Invited review article for the CQG special issue on nonlinear cosmological perturbations. V2 has additional refs and comments, minor errors corrected, version in CQG)

[40] Julien Larena; Jean-Michel Alimi; Thomas Buchert; Martin Kunz; Pier-Stefano Corasaniti Testing backreaction effects with observations, Phys. Rev. D, Volume 79 (2009), p. 083011

[41] Andrei D. Linde; Dmitri A. Linde; Arthur Mezhlumian Do we live in the center of the world?, Phys. Lett. B, Volume 345 (1995), pp. 203-210

[42] David Parkinson; Bruce A. Bassett; John D. Barrow Mapping the dark energy with varying alpha, Phys. Lett. B, Volume 578 (2004), pp. 235-240

[43] Jean-Philippe Uzan Varying constants, gravitation and cosmology, Living Rev. Rel., Volume 14 (2011) no. 2

[44] Dragan Huterer; Michael S. Turner Probing the dark energy: Methods and strategies, Phys. Rev. D, Volume 64 (2001), p. 123527

[45] Irit Maor; Ram Brustein; Paul J. Steinhardt Limitations in using luminosity distance to determine the equation of state of the universe, Phys. Rev. Lett., Volume 86 (2001), p. 6

[46] Jochen Weller; Andreas Albrecht Opportunities for future supernova studies of cosmic acceleration, Phys. Rev. Lett., Volume 86 (2001), pp. 1939-1942

[47] Michel Chevallier; David Polarski Accelerating universes with scaling dark matter, Int. J. Mod. Phys. D, Volume 10 (2001), pp. 213-224

[48] Eric V. Linder Exploring the expansion history of the universe, Phys. Rev. Lett., Volume 90 (2003), p. 091301

[49] Pier Stefano Corasaniti; E.J. Copeland A Model independent approach to the dark energy equation of state, Phys. Rev. D, Volume 67 (2003), p. 063521

[50] Marian Douspis; Yves Zolnierowski; Alain Blanchard; Alain Riazuelo What can be learned about dark energy evolution?, Astron. Astrophys., Volume 488 (2008), pp. 47-53 | DOI

[51] Bruce A. Bassett; Martin Kunz; Joseph Silk; Carlo Ungarelli A late time transition in the cosmic dark energy?, Mon. Not. Roy. Astron. Soc., Volume 336 (2002), pp. 1217-1222

[52] Bruce A. Bassett; Pier Stefano Corasaniti; Martin Kunz The essence of quintessence and the cost of compression, Astrophys. J., Volume 617 (2004), p. L1-L4

[53] Dragan Huterer; Glenn Starkman Parameterization of dark-energy properties: A principal-component approach, Phys. Rev. Lett., Volume 90 (2003), p. 031301

[54] Tracy Holsclaw; Ujjaini Alam; Bruno Sanso; Herbert Lee; Katrin Heitmann et al. Nonparametric dark energy reconstruction from supernova data, Phys. Rev. Lett., Volume 105 (2010), p. 241302

[55] Yun Wang; Peter M. Garnavich Measuring time dependence of dark energy density from type Ia supernova data, Astrophys. J., Volume 552 (2001), p. 445

[56] Max Tegmark Measuring the metric: A parametrized postFriedmanian approach to the cosmic dark energy problem, Phys. Rev. D, Volume 66 (2002), p. 103507

[57] Ruth A. Daly; S.G. Djorgovski A model-independent determination of the expansion and acceleration rates of the universe as a function of redshift and constraints on dark energy, Astrophys. J., Volume 597 (2003), pp. 9-20

[58] Martin Kunz; Andrew R. Liddle; David Parkinson; Changjun Gao Constraining the dark fluid, Phys. Rev. D, Volume 80 (2009), p. 083533

[59] M. Kowalski et al. Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J., Volume 686 (2008), pp. 749-778

[60] Yun Wang; Pia Mukherjee Observational constraints on dark energy and cosmic curvature, Phys. Rev. D, Volume 76 (2007), p. 103533

[61] Beth A. Reid et al. Baryon acoustic oscillations in the Sloan digital sky survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc., Volume 401 (2010), pp. 2148-2168

[62] Adam G. Riess; Lucas Macri; Stefano Casertano; Megan Sosey; Hubert Lampeitl et al. A redetermination of the Hubble constant with the Hubble space telescope from a differential distance ladder, Astrophys. J., Volume 699 (2009), pp. 539-563

[63] Hideo Kodama; Misao Sasaki Cosmological perturbation theory, Prog. Theor. Phys. Suppl., Volume 78 (1984), pp. 1-166

[64] Ruth Durrer Gauge invariant cosmological perturbation theory: A general study and its application to the texture scenario of structure formation, Fund. Cosmic Phys., Volume 15 (1994), p. 209

[65] Chung-Pei Ma; Edmund Bertschinger Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J., Volume 455 (1995), pp. 7-25

[66] Wayne Hu Covariant linear perturbation formalism, 2004 | arXiv

[67] Karim A. Malik; David Wands Cosmological perturbations, Phys. Rep., Volume 475 (2009), pp. 1-51

[68] Havard Sandvik; Max Tegmark; Matias Zaldarriaga; Ioav Waga The end of unified dark matter?, Phys. Rev. D, Volume 69 (2004), p. 123524

[69] Rachel Bean; Olivier Dore Are Chaplygin gases serious contenders to the dark energy throne?, Phys. Rev. D, Volume 68 (2003), p. 023515

[70] Guillermo Ballesteros; Lukas Hollenstein; Rajeev Kumar Jain; Martin Kunz Nonlinear cosmological consistency relations and effective matter stresses, 2011 | arXiv

[71] Luca Amendola; Martin Kunz; Domenico Sapone Measuring the dark side (with weak lensing), JCAP, Volume 0804 (2008), p. 013

[72] Scott F. Daniel; Eric V. Linder; Tristan L. Smith; Robert R. Caldwell; Asantha Cooray et al. Testing general relativity with current cosmological data, Phys. Rev. D, Volume 81 (2010), p. 123508

[73] Rachel Bean; Matipon Tangmatitham Current constraints on the cosmic growth history, Phys. Rev. D, Volume 81 (2010), p. 083534

[74] Pedro G. Ferreira; Constantinos Skordis The linear growth rate of structure in parametrized post Friedmannian universes, Phys. Rev. D, Volume 81 (2010), p. 104020

[75] Levon Pogosian; Alessandra Silvestri; Kazuya Koyama; Gong-Bo Zhao How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations?, Phys. Rev. D, Volume 81 (2010), p. 104023

[76] Gong-Bo Zhao; Tommaso Giannantonio; Levon Pogosian; Alessandra Silvestri; David J. Bacon et al. Probing modifications of general relativity using current cosmological observations, Phys. Rev. D, Volume 81 (2010), p. 103510

[77] Scott F. Daniel; Eric V. Linder Confronting general relativity with further cosmological data, Phys. Rev. D, Volume 82 (2010), p. 103523

[78] Wayne Hu; Ignacy Sawicki A parameterized post-Friedmann framework for modified gravity, Phys. Rev. D, Volume 76 (2007), p. 104043

[79] Wayne Hu Structure formation with generalized dark matter, Astrophys. J., Volume 506 (1998), pp. 485-494

[80] R.R. Caldwell; Rahul Dave; Paul J. Steinhardt Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., Volume 80 (1998), pp. 1582-1585

[81] C. Wetterich Cosmology and the fate of dilatation symmetry, Nucl. Phys. B, Volume 302 (1988), p. 668

[82] Bharat Ratra; P.J.E. Peebles Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, Volume 37 (1988), p. 3406

[83] Martin Kunz; Domenico Sapone Crossing the phantom divide, Phys. Rev. D, Volume 74 (2006), p. 123503

[84] Dragan Huterer; Michael S. Turner Prospects for probing the dark energy via supernova distance measurements, Phys. Rev. D, Volume 60 (1999), p. 081301

[85] Tarun Deep Saini; Somak Raychaudhury; Varun Sahni; Alexei A. Starobinsky Reconstructing the cosmic equation of state from supernova distances, Phys. Rev. Lett., Volume 85 (2000), pp. 1162-1165

[86] Martin Sahlen; Andrew R. Liddle; David Parkinson Direct reconstruction of the quintessence potential, Phys. Rev. D, Volume 72 (2005), p. 083511

[87] Takeshi Chiba; Takahiro Okabe; Masahide Yamaguchi Kinetically driven quintessence, Phys. Rev. D, Volume 62 (2000), p. 023511

[88] C. Armendariz-Picon; Viatcheslav F. Mukhanov; Paul J. Steinhardt A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett., Volume 85 (2000), pp. 4438-4441

[89] Camille Bonvin; Chiara Caprini; Ruth Durrer A no-go theorem for k-essence dark energy, Phys. Rev. Lett., Volume 97 (2006), p. 081303

[90] Camille Bonvin; Chiara Caprini; Ruth Durrer Superluminal motion and closed signal curves, 2007 | arXiv

[91] Eugeny Babichev; Viatcheslav Mukhanov; Alexander Vikman k-Essence, superluminal propagation, causality and emergent geometry, JHEP, Volume 0802 (2008), p. 101

[92] Sean M. Carroll; Mark Hoffman; Mark Trodden Can the dark energy equation of state parameter w be less than −1?, Phys. Rev. D, Volume 68 (2003), p. 023509

[93] Cedric Deffayet; Oriol Pujolas; Ignacy Sawicki; Alexander Vikman Imperfect dark energy from kinetic gravity braiding, JCAP, Volume 1010 (2010), p. 026

[94] Paolo Creminelli; Guido DʼAmico; Jorge Norena; Filippo Vernizzi The effective theory of quintessence: the w<1 side unveiled, JCAP, Volume 0902 (2009), p. 018

[95] Eugene A. Lim; Ignacy Sawicki; Alexander Vikman Dust of dark energy, JCAP, Volume 1005 (2010), p. 012

[96] Bo Feng; Xiu-Lian Wang; Xin-Min Zhang Dark energy constraints from the cosmic age and supernova, Phys. Lett. B, Volume 607 (2005), pp. 35-41

[97] Wayne Hu Crossing the phantom divide: Dark energy internal degrees of freedom, Phys. Rev. D, Volume 71 (2005), p. 047301

[98] Domenico Sapone; Martin Kunz; Martin Kunz Fingerprinting dark energy, Phys. Rev. D, Volume 80 (2009), p. 083519

[99] Domenico Sapone; Martin Kunz; Luca Amendola Fingerprinting dark energy II: Weak lensing and galaxy clustering tests, Phys. Rev. D, Volume 82 (2010), p. 103535

[100] Roland de Putter; Dragan Huterer; Eric V. Linder Measuring the speed of dark: Detecting dark energy perturbations, Phys. Rev. D, Volume 81 (2010), p. 103513

[101] Guillermo Ballesteros; Julien Lesgourgues Dark energy with non-adiabatic sound speed: initial conditions and detectability, JCAP, Volume 1010 (2010), p. 014

[102] Saul Perlmutter; Michael S. Turner; Martin J. White Constraining dark energy with SNe Ia and large scale structure, Phys. Rev. Lett., Volume 83 (1999), pp. 670-673

[103] Pier Stefano Corasaniti; Edmund J. Copeland Constraining the Quintessence equation of state with SnIa data and CMB peaks, Phys. Rev. D, Volume 65 (2002), p. 043004

[104] Jochen Weller; A.M. Lewis Large scale cosmic microwave background anisotropies and dark energy, Mon. Not. Roy. Astron. Soc., Volume 346 (2003), pp. 987-993

[105] Carlo Baccigalupi; Amedeo Balbi; Sabino Matarrese; Francesca Perrotta; Nicola Vittorio Constraints on flat cosmologies with tracking quintessence from cosmic microwave background observations, Phys. Rev. D, Volume 65 (2002), p. 063520

[106] Rachel Bean; Alessandro Melchiorri Current constraints on the dark energy equation of state, Phys. Rev. D, Volume 65 (2002), p. 041302

[107] Bruce A. Bassett; Martin Kunz; David Parkinson; Carlo Ungarelli Condensate cosmology – Dark energy from dark matter, Phys. Rev. D, Volume 68 (2003), p. 043504

[108] Rachel Bean; Olivier Dore Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP, Phys. Rev. D, Volume 69 (2004), p. 083503

[109] Martin Kunz; Pier-Stefano Corasaniti; David Parkinson; Edmund J. Copeland Model-independent dark energy test with sigma(8) using results from the Wilkinson microwave anisotropy probe, Phys. Rev. D, Volume 70 (2004), p. 041301 (reviewed in Nature, 431, 2004, pp. 519)

[110] Pier Stefano Corasaniti; M. Kunz; David Parkinson; E.J. Copeland; B.A. Bassett The foundations of observing dark energy dynamics with the Wilkinson microwave anisotropy probe, Phys. Rev. D, Volume 70 (2004), p. 083006

[111] Uros Seljak; Matias Zaldarriaga A Line of sight integration approach to cosmic microwave background anisotropies, Astrophys. J., Volume 469 (1996), pp. 437-444

[112] Antony Lewis; Anthony Challinor; Anthony Lasenby Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., Volume 538 (2000), pp. 473-476

[113] Andrew R. Liddle How many cosmological parameters?, Mon. Not. Roy. Astron. Soc., Volume 351 (2004), p. L49-L53

[114] Tarun Deep Saini; J. Weller; S.L. Bridle Revealing the nature of dark energy using Bayesian evidence, Mon. Not. Roy. Astron. Soc., Volume 348 (2004), p. 603

[115] Roberto Trotta Applications of Bayesian model selection to cosmological parameters, Mon. Not. Roy. Astron. Soc., Volume 378 (2007), pp. 72-82

[116] Martin Kunz; Roberto Trotta; David Parkinson Measuring the effective complexity of cosmological models, Phys. Rev. D, Volume 74 (2006), p. 023503

[117] E.T. Jaynes; G.L. Bretthorst Probability Theory, Cambridge University Press, 2003

[118] William Feller An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons Inc., New York, 1968

[119] William Feller An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons Inc., New York, 1971

[120] N. Metropolis; A.W. Rosenbluth; M.N. Rosenbluth; A.H. Teller; E. Teller Equation of state calculations by fast computing machines, J. Chem. Phys., Volume 21 (1953), pp. 1087-1092

[121] Antony Lewis; Sarah Bridle Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D, Volume 66 (2002), p. 103511

[122] Antony Lewis; Sarah Bridle CosmoMC notes http://cosmologist.info/notes/CosmoMC.pdf

[123] D.J.C. MacKay Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003

[124] J. Skilling Nested sampling (R. Fischer; R. Preuss; U.V. Toussaint, eds.), Am. Inst. Phys. Conf. Proc., vol. 735, November 2004 , pp. 395-405

[125] Pia Mukherjee; David Parkinson; Andrew R. Liddle A nested sampling algorithm for cosmological model selection, Astrophys. J., Volume 638 (2006), p. L51-L54

[126] Farhan Feroz; M.P. Hobson Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc., Volume 384 (2008), p. 449

[127] Darren Wraith; Martin Kilbinger; Karim Benabed; Olivier Cappe; Jean-Francois Cardoso et al. Estimation of cosmological parameters using adaptive importance sampling, Phys. Rev. D, Volume 80 (2009), p. 023507

[128] R. Amanullah; C. Lidman; D. Rubin; G. Aldering; P. Astier et al. Spectra and light curves of six type Ia supernovae at 0.511<z<1.12 and the Union2 compilation, Astrophys. J., Volume 716 (2010), pp. 712-738

[129] D. Larson; J. Dunkley; G. Hinshaw; E. Komatsu; M.R. Nolta et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Power spectra and WMAP-derived parameters, Astrophys. J. Suppl., Volume 192 (2011), p. 16

[130] Caroline Zunckel; R. Trotta Reconstructing the history of dark energy using maximum entropy, Mon. Not. Roy. Astron. Soc., Volume 380 (2007), p. 865

[131] Luca Amendola, Martin Kunz, Ippocratis Saltas, Ignacy Sawicki, All you can know about dark energy, in preparation.

[132] Philippe Brax; Anne-Christine Davis; Baojiu Li Modified gravity tomography, 2011 | arXiv

[133] Shinji Tsujikawa Modified gravity models of dark energy, Lect. Notes Phys., Volume 800 (2010), pp. 99-145

[134] G.R. Dvali; Gregory Gabadadze; Massimo Porrati 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, Volume 485 (2000), pp. 208-214

[135] Ippocratis D. Saltas; Martin Kunz Anisotropic stress and stability in modified gravity models, Phys. Rev. D, Volume 83 (2011), p. 064042

[136] Antonio De Felice; Teruaki Suyama Vacuum structure for scalar cosmological perturbations in modified gravity models, JCAP, Volume 0906 (2009), p. 034

[137] Richard P. Woodard Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys., Volume 720 (2007), pp. 403-433

[138] Roy Maartens; Elisabetta Majerotto Observational constraints on self-accelerating cosmology, Phys. Rev. D, Volume 74 (2006), p. 023004

[139] Arthur Lue; Roman Scoccimarro; Glenn D. Starkman Probing Newtonʼs constant on vast scales: DGP gravity, cosmic acceleration and large scale structure, Phys. Rev. D, Volume 69 (2004), p. 124015

[140] Kazuya Koyama; Roy Maartens Structure formation in the dgp cosmological model, JCAP, Volume 0601 (2006), p. 016

[141] Gregory Walter Horndeski Second-order scalar–tensor field equations in a four-dimensional space, Int. J. Theor. Phys., Volume 10 (1974), pp. 363-384 | DOI

[142] Alberto Nicolis; Riccardo Rattazzi; Enrico Trincherini The Galileon as a local modification of gravity, Phys. Rev. D, Volume 79 (2009), p. 064036

[143] Claudia de Rham; Gregory Gabadadze Generalization of the Fierz–Pauli action, Phys. Rev. D, Volume 82 (2010), p. 044020

[144] Christos Charmousis; Edmund J. Copeland; Antonio Padilla; Paul M. Saffin General second order scalar–tensor theory, self tuning, and the Fab Four, 2011 | arXiv

[145] Antonio De Felice; Shinji Tsujikawa Conditions for the cosmological viability of the most general scalar–tensor theories and their applications to extended Galileon dark energy models, 2011 | arXiv

[146] Mark Wyman Galilean-invariant scalar fields can strengthen gravitational lensing, Phys. Rev. Lett., Volume 106 (2011), p. 201102

[147] Robert Caldwell; Asantha Cooray; Alessandro Melchiorri Constraints on a new post-general relativity cosmological parameter, Phys. Rev. D, Volume 76 (2007), p. 023507

[148] Edmund Bertschinger; Phillip Zukin Distinguishing modified gravity from dark energy, Phys. Rev. D, Volume 78 (2008), p. 024015

[149] Yong-Seon Song; Kazuya Koyama Consistency test of general relativity from large scale structure of the universe, JCAP, Volume 0901 (2009), p. 048

[150] Yong-Seon Song; Lukas Hollenstein; Gabriela Caldera-Cabral; Kazuya Koyama Theoretical priors on modified growth parametrisations, JCAP, Volume 1004 (2010), p. 018

[151] Yong-Seon Song; Gong-Bo Zhao; David Bacon; Kazuya Koyama; Robert C. Nichol et al. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity, Phys. Rev. D, Volume 84 (2011), p. 083523

[152] Alireza Hojjati; Levon Pogosian; Gong-Bo Zhao Testing gravity with CAMB and CosmoMC, JCAP, Volume 1108 (2011), p. 005

[153] Tessa Baker; Pedro G. Ferreira; Constantinos Skordis; Joe Zuntz Towards a fully consistent parameterization of modified gravity, Phys. Rev. D, Volume 84 (2011), p. 124018

[154] Gong-Bo Zhao; Hong Li; Eric V. Linder; Kazuya Koyama; David J. Bacon et al. Testing Einstein gravity with cosmic growth and expansion, 2011 | arXiv

[155] Joe Zuntz; Tessa Baker; Pedro Ferreira; Constantinos Skordis Ambiguous tests of general relativity on cosmological scales, 2011 | arXiv

[156] Luca Amendola; Stephen Appleby; David Bacon; Tessa Baker et al. Cosmology and fundamental physics with the Euclid satellite: Review document of the Euclid Theory Working Group | arXiv

[157] Martin Kunz The dark degeneracy: On the number and nature of dark components, Phys. Rev. D, Volume 80 (2009), p. 123001

[158] Wayne Hu; Daniel J. Eisenstein The structure of structure formation theories, Phys. Rev. D, Volume 59 (1999), p. 083509

[159] Martin Kunz Why we need to see the dark matter to understand the dark energy, J. Phys. Conf. Ser., Volume 110 (2008), p. 062014

[160] Pierre Astier et al. The supernova legacy survey: Measurement of omega(m), omega(lambda) and W from the first year data set, Astron. Astrophys., Volume 447 (2006), pp. 31-48

[161] D.N. Spergel et al. Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl., Volume 170 (2007), p. 377

[162] Luca Amendola; Shinji Tsujikawa Phantom crossing, equation-of-state singularities, and local gravity constraints in f(R) models, Phys. Lett. B, Volume 660 (2008), pp. 125-132

[163] Greg Huey; Benjamin D. Wandelt Interacting quintessence. The coincidence problem and cosmic acceleration, Phys. Rev. D, Volume 74 (2006), p. 023519

[164] Subinoy Das; Pier Stefano Corasaniti; Justin Khoury Super-acceleration as signature of dark sector interaction, Phys. Rev. D, Volume 73 (2006), p. 083509

[165] Renee Hlozek; Marina Cortes; Chris Clarkson; Bruce Bassett Non-parametric dark energy degeneracies, 2008 | arXiv

[166] Chris Clarkson; Marina Cortes; Bruce A. Bassett Dynamical dark energy or simply cosmic curvature?, JCAP, Volume 0708 (2007), p. 011

[167] Chris Clarkson; Bruce Bassett; Teresa Hui-Ching Lu A general test of the Copernican Principle, Phys. Rev. Lett., Volume 101 (2008), p. 011301

[168] Roy Maartens; Tim Gebbie; George F.R. Ellis Covariant cosmic microwave background anisotropies. 2. Nonlinear dynamics, Phys. Rev. D, Volume 59 (1999), p. 083506

[169] A.I. Vainshtein To the problem of nonvanishing gravitation mass, Phys. Lett. B, Volume 39 (1972), pp. 393-394

[170] Justin Khoury; Amanda Weltman Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett., Volume 93 (2004), p. 171104

[171] Philippe Brax; Carsten van de Bruck; Anne-Christine Davis; Justin Khoury; Amanda Weltman Detecting dark energy in orbit – The cosmological chameleon, Phys. Rev. D, Volume 70 (2004), p. 123518

[172] Wayne Hu; Ignacy Sawicki Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D, Volume 76 (2007), p. 064004

[173] Gong-Bo Zhao; Baojiu Li; Kazuya Koyama Testing general relativity using the environmental dependence of dark matter halos, Phys. Rev. Lett., Volume 107 (2011), p. 071303

[174] Jean-Philippe Uzan; Chris Clarkson; George F.R. Ellis Time drift of cosmological redshifts as a test of the Copernican principle, Phys. Rev. Lett., Volume 100 (2008), p. 191303

[175] Jaiyul Yoo General relativistic description of the observed galaxy power spectrum: Do we understand what we measure?, Phys. Rev. D, Volume 82 (2010), p. 083508

[176] Camille Bonvin; Ruth Durrer What galaxy surveys really measure, Phys. Rev. D, Volume 84 (2011), p. 063505

[177] Anthony Challinor; Antony Lewis The linear power spectrum of observed source number counts, Phys. Rev. D, Volume 84 (2011), p. 043516

[178] Donghui Jeong; Fabian Schmidt; Christopher M. Hirata Large-scale clustering of galaxies in general relativity, 2011 | arXiv

Cité par Sources :

Commentaires - Politique