[Les conducteurs organiques sous champs magnétiques intenses : Systèmes modèles pour la physique des oscillations quantiques]
Bien que les conducteurs organiques présentent des structures cristallines complexes et de basse symétrie, les calculs prédisent une structure électronique multibande quasi-bi dimensionnelle conduisant généralement à une surface de Fermi très simple. Bien que quelques résultats expérimentaux déroutants soient observés, les données de nombreux composés sont en accord avec les calculs, ce qui fait de ces derniers des systèmes modèles pour la physique des oscillations quantiques dans les réseaux dʼorbites couplées par la rupture magnétique. Lʼétat de lʼart de cette problématique est passée en revue.
Even although organic conductors have complicated crystalline structures with low symmetry and large unit cells, band structure calculations predict a multiband quasi-two-dimensional electronic structure yielding a very simple Fermi surface in most cases. Although few puzzling experimental results have been observed, data for numerous compounds are in agreement with calculations, which make them suitable systems for studying magnetic quantum oscillations in networks of orbits connected by magnetic breakdown. The state of the art of these problematics is reviewed.
Mots-clés : Métaux organiques, Oscillations quantiques, Surface de Fermi
Alain Audouard 1 ; Jean-Yves Fortin 2
@article{CRPHYS_2013__14_1_15_0, author = {Alain Audouard and Jean-Yves Fortin}, title = {Organic conductors in high magnetic fields: {Model} systems for quantum oscillation physics}, journal = {Comptes Rendus. Physique}, pages = {15--26}, publisher = {Elsevier}, volume = {14}, number = {1}, year = {2013}, doi = {10.1016/j.crhy.2012.07.001}, language = {en}, }
TY - JOUR AU - Alain Audouard AU - Jean-Yves Fortin TI - Organic conductors in high magnetic fields: Model systems for quantum oscillation physics JO - Comptes Rendus. Physique PY - 2013 SP - 15 EP - 26 VL - 14 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2012.07.001 LA - en ID - CRPHYS_2013__14_1_15_0 ER -
Alain Audouard; Jean-Yves Fortin. Organic conductors in high magnetic fields: Model systems for quantum oscillation physics. Comptes Rendus. Physique, Physics in High Magnetic Fields / Physique en champ magnétique intense, Volume 14 (2013) no. 1, pp. 15-26. doi : 10.1016/j.crhy.2012.07.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.07.001/
[1] Step-by-step construction of the electronic structure of molecular conductors: conceptual aspects and applications, Adv. Funct. Mater., Volume 14 (2004), p. 201
[2] Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues, Chem. Rev., Volume 104 (2004), p. 5347
[3] Quantum oscillations in the linear chain of coupled orbits: the organic metal with two cation layers θ-(ET)4CoBr4(C6H4Cl2) | arXiv
[4] Molecular metals based on BEDT-TTF radical cations salts with magnetic metal oxalates as counterions:
[5] Shubnikov–de Haas oscillations spectrum of the strongly correlated quasi-2D organic metal (BEDT-TTF)8Hg4Cl12(C6H5Br)2 under pressure, Eur. Phys. J. B, Volume 66 (2008), p. 489
[6] Fermi-surface instabilities in the organic conductor (TMTSF)2NO3 – High-pressure studies, Europhys. Lett., Volume 29 (1995), p. 635
[7] New molecular metals based on BEDO radical cation salts with the square planar Ni(CN)2−4 anion, J. Mater. Chem., Volume 15 (2005), p. 1248
[8] Quantization of coupled orbits in metals, Proc. Roy. Soc. (London) A, Volume 270 (1962), p. 1
[9] Magnetic Oscillations in Metals, Cambridge University Press, Cambridge, 1984
[10] Eur. Phys. J. B, 1 (1998), p. 419
[11] Characterization of the Fermi surface of BEDT-TTF4[Hg2Cl6]⋅PhCl by electronic band structure calculations, J. Phys. I France, Volume 4 (1994), p. 939
[12] On the theory of the de Haas–van Alphen effect for particles with an arbitrary dispersion law, Dokl. Akad. Nauk SSSR, Volume 96 (1954), p. 963 (in Russian)
[13] On the theory of magnetic susceptibility of metals at low temperatures, Sov. Phys. JETP, Volume 29 (1955), p. 730
[14] Physical Kinetics, Course of Theoretical Physics, vol. 10, Butterworth–Heinemann Ltd, Oxford, 1981
[15] Phys. Rev. B, 77 (2008), p. 075434
[16] Theory of the Shubnikov–de Haas effect in quasi-two-dimensional metals, Phys. Rev. B, Volume 67 (2003), p. 144401
[17] Statistical Physics, Part 2, Course of Theoretical Physics, vol. 9, Butterworth–Heinemann Ltd, Oxford, 1980
[18] De Haas–van Alphen oscillations and magnetic breakdown: Semiclassical calculation of multiband orbits, Phys. Rev. B, Volume 57 (1998), p. 1484
[19] Some electronic properties of the organic superconductor β-(BEDT-TTF)2I3, J. Phys. France, Volume 50 (1989), p. 2741
[20] Slow oscillations of magnetoresistance in quasi-two-dimensional metals, Phys. Rev. Lett., Volume 89 (2002), p. 126802
[21] High magnetic fields: a tool for studying electronic properties of layered organic metals, Chem. Rev., Volume 104 (2004), p. 5737
[22] Galvanomagnetic phenomena in layered organic conductors, Low Temp. Phys., Volume 31 (2005), p. 185
[23] Test for interlayer coherence in a quasi-two-dimensional superconductor, Phys. Rev. Lett., Volume 88 (2002), p. 037001
[24] Quantum interference of electron waves in a normal metal, Phys. Rev. Lett., Volume 26 (1971), p. 556
[25] Interfering electron quantum states in ultrapure magnesium, J. Low Temp. Phys., Volume 14 (1974), p. 111
[26] The effects of open sections of the Fermi surface on the physical properties of 2D organic molecular metals, Synth. Met., Volume 61 (1993), p. 63
[27] Direct observation of the magnetic-breakdown induced quantum interference in the quasi-two-dimensional organic metal κ-(BEDT-TTF)2Cu(NCS)2, Phys. Rev. Lett., Volume 77 (1996), p. 2530
[28] Magnetic breakdown and quantum interference in the quasi-two-dimensional superconductor κ-(BEDT-TTF)2Cu(NCS)2 in high magnetic fields, J. Phys.: Condens. Matter, Volume 8 (1996), p. 5415
[29] Magnetic molecular conductors, Chem. Rev., Volume 104 (2004), p. 5419
[30] Superconducting and semiconducting magnetic charge transfer salts: (BEDT-TTF)4AFe(C2O4)3⋅C6H5CN (
[31] The effect of magnetic ions and disorder on superconducting
[32] Fermi-surface topology and the effects of intrinsic disorder in a class of charge-transfer salts containing magnetic ions:
[33] Robust superconducting state in the low-quasiparticle-density organic metals
[34] Pressure dependence of the Shubnikov–de Haas oscillation spectrum of
[35] Combination frequencies of magnetic oscillations in
[36] Pressure dependence of Shubnikov–de Haas oscillation spectra in the quasi-two-dimensional organic metal
[37] Indications for the coexistence of closed orbit and quantum interferometer in
[38] Magnetoresistance oscillations up to 32 K in the organic metal
[39] Quantum interference and Shubnikov–de Haas oscillations in
[40] Theory of the de Haas–van Alphen effect in a system of coupled orbits. Application to magnesium, Phys. Rev., Volume 147 (1966), p. 505
[41] De Haas–van Alphen study of coherent magnetic breakdown in magnesium, Phys. Rev. Lett., Volume 48 (1982), p. 275
[42] Shubnikov–de Haas effect and the Fermi surface in an ambient-pressure organic superconductor [bis(ethylenedithiolo)tetrathiafulvalene]2Cu(NCS)2, Phys. Rev. B, Volume 38 (1988), p. 938
[43] High-field de Haas–van Alphen studies of κ-(BEDT-TTF)2Cu(NCS)2, Europhys. Lett., Volume 32 (1995), p. 681
[44] Effective mass and combination frequencies of de Haas–van Alphen oscillations in κ-(BEDT-TTF)2Cu(NCS)2, Synth. Met., Volume 85 (1997), p. 1573
[45] Forbidden orbits in the magnetic breakdown regime of κ-(BEDT-TTF)2Cu(NCS)2, Physica B, Volume 259–261 (1999), p. 1079
[46] Frequency combinations in the magnetoresistance oscillations spectrum of a linear chain of coupled orbits with a high scattering rate, Eur. Phys. J. B, Volume 55 (2007), p. 383
[47] Numerical model of quantum oscillations in quasi-two-dimensional organic metals in high magnetic fields, Phys. Rev. B, Volume 54 (1996), p. 9977
[48] Origin of anomalous magnetic breakdown frequencies in quasi-two-dimensional organic conductors, Phys. Rev. B, Volume 56 (1997), p. 11566
[49] Frequency mixing of magnetic oscillations: beyond Falicov–Stachowiak theory, Phys. Rev. Lett., Volume 80 (1998), p. 3117
[50] De Haas–van Alphen effect in canonical and grand canonical multiband Fermi liquid, Phys. Rev. Lett., Volume 76 (1996), p. 1308
[51] Semiclassical theory of magnetic quantum oscillations in a two-dimensional multiband canonical Fermi liquid, Phys. Rev. B, Volume 63 (2001), p. 033105
[52] Origin of combination frequencies in quantum magnetization oscillations of two-dimensional multiband metals, Phys. Rev. B, Volume 65 (2002), p. 153403
[53] De Haas–van Alphen effect in two-dimensional and quasi-two-dimensional systems, Phys. Rev. B, Volume 65 (2002), p. 205405
[54] Analytical treatment of the de Haas–van Alphen frequency combination due to chemical potential oscillations in an idealized two-band Fermi liquid, Phys. Rev. B, Volume 71 (2005), p. 15501
[55] De Haas–van Alphen oscillations in the quasi-two-dimensional organic conductor κ-(ET)2Cu(NCS)2: the magnetic breakdown approach, Phys. Rev. B, Volume 65 (2002), p. 165102
[56] De Haas–van Alphen and chemical potential oscillations in the magnetic-breakdown quasi-two-dimensional organic conductor κ-(BEDT-TTF)2Cu(NCS)2, Phys. Rev. B, Volume 70 (2004), p. 245114
[57] Phase transition at 320 K in new layered organic metal (BEDT-TTF)4CoBr4(C6H4Cl2), Cryst. Eng. Comm., Volume 13 (2011), p. 1467
[58] Random walks and magnetic oscillations in compensated metals, Phys. Rev. B, Volume 80 (2009), p. 214407
[59] Shubnikov–de Haas oscillations in new organic conductors (ET)8[Hg4Cl12(C6H5Cl)2] and (ET)8[Hg4Cl12(C6H5Br)2], J. Phys. I France, Volume 6 (1996), p. 1809
[60] Competing types of quantum oscillations in the two-dimensional organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2, Phys. Rev. B, Volume 65 (2002), p. 155106
[61] Magnetic oscillations in the 2D network of compensated coupled orbits of the organic metal (BEDT-TTF)8Hg4Cl12(C6H5Br)2, Eur. Phys. J. B, Volume 31 (2003), p. 53
[62] Magnetic oscillations in a two-dimensional network of compensated electron and hole orbits, Europhys. Lett., Volume 71 (2005), p. 783
[63] Temperature- and pressure-dependent metallic states in (BEDT-TTF)8[Hg4Br12(C6H5Br)2], Phys. Rev. B, Volume 84 (2011), p. 045101
[64] Damping of field-induced chemical potential oscillations in ideal two-band compensated metals, Phys. Rev. B, Volume 77 (2008), p. 134440
[65] Metallic molecular crystals containing chiral or racemic guest molecules, Cryst. Eng. Comm., Volume 9 (2007), p. 865
[66] A new BEDT-TTF-based organic metal with an anionic weak acceptor 2-sulfo-1, 4-benzoquinone, Synth. Met. (2011) (available online 25 September 2011) (ISSN: 0379-6779) | DOI
[67] Coexistence of two donor packing motifs in the stable molecular metal α-‘pseudo-κ’-(BEDT-TTF)4(H3O)[Fe(C2O4)3]⋅C6H4Br2, Cryst. Eng. Comm., Volume 13 (2011), p. 2430
[68] Crystal structure, electrical transport, electronic band structure and quantum oscillations studies of the organic conducting salt θ-(BETS)4HgBr4(C6H5Cl), Synth. Met., Volume 123 (2001), p. 149
[69] Crystal structure, Fermi surface calculations and Shubnikov–de Haas oscillation spectrum of the organic metal θ-(BETS)4HgBr4(C6H5Cl) at low temperature, Solid State Sci., Volume 9 (2007), p. 1140
[70] Two-dimensional organic metals θ-(BETS)4MBr4(PhBr),
[71] Quantum oscillations of ortho-II high-temperature cuprates, Phys. Rev. B, Volume 78 (2008), p. 224516
- Enhancements of the 32 and 52 frequencies of de Haas–van Alphen oscillations near the Lifshitz transition in a two-dimensional compensated metal with overtilted Dirac cones, Physical Review B, Volume 100 (2019) no. 19 | DOI:10.1103/physrevb.100.195433
- Does Fourier analysis yield reliable amplitudes of quantum oscillations?, The European Physical Journal Applied Physics, Volume 83 (2018) no. 3, p. 30201 | DOI:10.1051/epjap/2018170397
- Quantum oscillations in coupled orbits networks of (BEDT-TTF) salts with tris(oxalato)metallate anions, Low Temperature Physics, Volume 43 (2017) no. 1, p. 27 | DOI:10.1063/1.4974184
- Transmission and tunneling probability in two-band metals: Influence of magnetic breakdown on the Onsager phase of quantum oscillations, Low Temperature Physics, Volume 43 (2017) no. 2, p. 173 | DOI:10.1063/1.4976631
- Materials in a High Magnetic Field, Materials Under Extreme Conditions (2017), p. 755 | DOI:10.1016/b978-0-12-801300-7.00021-8
- De Haas-van Alphen oscillations in the compensated organic metal α-‵pseudo-κ′-(ET)4H3O[Fe(C2O4)3]·(C6H4Br2), The European Physical Journal B, Volume 87 (2014) no. 9 | DOI:10.1140/epjb/e2014-50340-9
- Chemical reactions between poly(carbonate) and poly(vinyl amine) thermally induced by a high magnetic field pulse, Polymer, Volume 54 (2013) no. 25, p. 6732 | DOI:10.1016/j.polymer.2013.10.022
Cité par 7 documents. Sources : Crossref
Commentaires - Politique