Comptes Rendus
Nanophotonics and near field / Nanophotonique et champ proche
Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments
[Comportement à la polarisation optique de nanoparticules de symétrie dʼordre 3 : Modèle et résultats expérimentaux]
Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 830-836.

Dans cet article, nous démontrons que toutes les nanostructures, même de géométrie complexe, qui appartiennent au groupe de symétrie ponctuel Cn avec n3 ont une réponse optique linéaire ne dépendant pas de la polarisation de la lumière incidente, si son vecteur dʼonde est parallèle à lʼaxe de symétrie Cn. Nous avons fabriqué des nanoparticules dʼor en forme de triangle et dʼétoile par lithographie électronique. Leur comportement apolaire est confirmé expérimentalement par des mesures sur les résonances plasmon et par diffusion Raman exaltée de surface.

In this study, we demonstrate that any complex nanostructure that belongs to Cn, with n3, symmetry point group for along at least one dimension displays apolar linear response to light input when the incoming wave vector is parallel to the Cn axis. Triangle and star shaped gold nanoparticles were designed and fabricated by electron beam lithography (EBL) technique. The apolar behavior of such nanostructures was experimentally confirmed by way of localized surface plasmon resonances (LSPR) properties and surface-enhanced Raman scattering (SERS) measurements.

Publié le :
DOI : 10.1016/j.crhy.2012.09.004
Keywords: Gold nanoparticles, Light polarization, Symmetry point group
Mot clés : Nanoparticules dʼor, Polarisation optique, Groupe ponctuel de symétrie
Hong Shen 1 ; Jérémy Rouxel 1, 2 ; Nicolas Guillot 3 ; Marc Lamy de la Chapelle 3 ; Timothée Toury 1

1 ICD-LNIO, UMR STMR CNRS 6279, université de technologie de Troyes, 12, rue Marie-Curie, 10000 Troyes, France
2 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
3 Laboratoire CSPBAT UMR 7244, université Paris 13, 74, rue Marcel-Cachin, 93017 Bobigny, France
@article{CRPHYS_2012__13_8_830_0,
     author = {Hong Shen and J\'er\'emy Rouxel and Nicolas Guillot and Marc Lamy de la Chapelle and Timoth\'ee Toury},
     title = {Light polarization properties of three fold symmetry gold nanoparticles: {Model} and experiments},
     journal = {Comptes Rendus. Physique},
     pages = {830--836},
     publisher = {Elsevier},
     volume = {13},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crhy.2012.09.004},
     language = {en},
}
TY  - JOUR
AU  - Hong Shen
AU  - Jérémy Rouxel
AU  - Nicolas Guillot
AU  - Marc Lamy de la Chapelle
AU  - Timothée Toury
TI  - Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 830
EP  - 836
VL  - 13
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.09.004
LA  - en
ID  - CRPHYS_2012__13_8_830_0
ER  - 
%0 Journal Article
%A Hong Shen
%A Jérémy Rouxel
%A Nicolas Guillot
%A Marc Lamy de la Chapelle
%A Timothée Toury
%T Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments
%J Comptes Rendus. Physique
%D 2012
%P 830-836
%V 13
%N 8
%I Elsevier
%R 10.1016/j.crhy.2012.09.004
%G en
%F CRPHYS_2012__13_8_830_0
Hong Shen; Jérémy Rouxel; Nicolas Guillot; Marc Lamy de la Chapelle; Timothée Toury. Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments. Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 830-836. doi : 10.1016/j.crhy.2012.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.09.004/

[1] E. Hutter; J. Fendler Exploitation of localized surface plasmon resonance, Adv. Mater., Volume 16 (2004) no. 19, pp. 1685-1706

[2] W. Fritzsche; T.A. Taton Metal nanoparticles as labels for heterogeneous, chip-based DNA detection, Nanotechnology, Volume 14 (2003) no. 12, p. R63

[3] S. Nie; S.R. Emory Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, Volume 275 (1997) no. 5303, pp. 1102-1106 | DOI

[4] A.J. Haes; R.P. Van Duyne A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc., Volume 124 (2002) no. 35, pp. 10596-10604 (pMID: 12197762) | DOI

[5] H. Xu; J. Aizpurua; M. Käll; P. Apell Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E, Volume 62 (2000), pp. 4318-4324 | DOI

[6] K. Kneipp; Y. Wang; H. Kneipp; L.T. Perelman; I. Itzkan; R.R. Dasari; M.S. Feld Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett., Volume 78 (1997) no. 9, pp. 1667-1670 | DOI

[7] K.-i. Yoshida; T. Itoh; H. Tamaru; V. Biju; M. Ishikawa; Y. Ozaki Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures, Phys. Rev. B, Volume 81 (2010), p. 115406 | DOI

[8] F. Neubrech; A. Garcia-Etxarri; D. Weber; J. Bochterle; H. Shen; M.L. de la Chapelle; G.W. Bryant; J. Aizpurua; A. Pucci Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods, Appl. Phys. Lett., Volume 96 (2010) no. 21, p. 213111 | DOI

[9] A. Pucci; F. Neubrech; D. Weber; S. Hong; T. Toury; M.L. de la Chapelle Surface enhanced infrared spectroscopy using gold nanoantennas, Phys. Status Solidi (b), Volume 247 (2010) no. 8, pp. 2071-2074 | DOI

[10] C.D. Geddes; I. Gryczynski; J. Malicka; Z. Gryczynski; J.R. Lakowicz Metal-enhanced fluorescence: Potential applications in HTS, Comb. Chem. High Throughput Screen., Volume 6 (2003), pp. 109-117

[11] H. Xu; E.J. Bjerneld; M. Käll; L. Börjesson Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett., Volume 83 (1999), pp. 4357-4360 | DOI

[12] E. Prodan; C. Radloff; N.J. Halas; P. Nordlander A hybridization model for the plasmon response of complex nanostructures, Science, Volume 302 (2003) no. 5644, pp. 419-422 | DOI

[13] C.E. Talley; J.B. Jackson; C. Oubre; N.K. Grady; C.W. Hollars; S.M. Lane; T.R. Huser; P. Nordlander; N.J. Halas Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett., Volume 5 (2005) no. 8, pp. 1569-1574 | DOI

[14] K.-i. Yoshida; T. Itoh; H. Tamaru; V. Biju; M. Ishikawa; Y. Ozaki Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures, Phys. Rev. B, Volume 81 (2010), p. 115406 | DOI

[15] J. Grand; M.L. de la Chapelle; J.-L. Bijeon; P.-M. Adam; A. Vial; P. Royer Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays, Phys. Rev. B, Volume 72 (2005) no. 3, p. 033407 | DOI

[16] A. Wokaun, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 38, Academic Press, New York, 1984

[17] J. Jerphagnon; D. Chemla; R. Bonneville The description of the physical properties of condensed matter using irreducible tensors, Adv. Phys., Volume 27 (1978), p. 609

[18] D. Varshalovich; A. Moskalev; V. Khersonskii Quantum Theory of Angular Momentum, World Scientific Pub. Co. Inc., 1988

[19] J. Zyss Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials, J. Chem. Phys., Volume 98 (1993), p. 6583

[20] M.E. Rose Elementary Theory of Angular Momentum, Dover, 1957

[21] S. Brasselet; J. Zyss Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media, J. Opt. Soc. Am. B, Volume 15 (1998), p. 257

[22] T. Klar; M. Perner; S. Grosse; G. von Plessen; W. Spirkl; J. Feldmann Surface-plasmon resonances in single metallic nanoparticles, Phys. Rev. Lett., Volume 80 (1998), pp. 4249-4252 | DOI

[23] S.A. Maier Plasmonics: Fundamentals and Applications, Springer-Verlag, New York, 2007

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

High-resolution microscopy of plasmon field distributions by scanning tunneling luminescence and photoemission electron microscopies

Ludovic Douillard; Fabrice Charra

C. R. Phys (2012)


TiO 2 , ZnO, and SnO 2 -based metal oxides for photocatalytic applications: principles and development

Olga Ishchenko; Vincent Rogé; Guillaume Lamblin; ...

C. R. Chim (2021)


Bottom-up nanocolloidal metamaterials and metasurfaces at optical frequencies

Alexandre Baron; Ashod Aradian; Virginie Ponsinet; ...

C. R. Phys (2020)