[Cristallogenèse et caractérisations de monocristaux ferroélectriques sans plomb à base de KNN]
Des monocristaux centimétriques issus du système Li2O–Na2O–K2O–Nb2O5–Ta2O5–Sb2O3 ont été obtenus par la méthode des flux. Les cristaux de composition (Li0.023Na0.583K0.394)(Nb0.925Ta0.037Sb0.038)O3 et (Li0.034Na0.609K0.357)(Nb0.896Ta0.047Sb0.057)O3 ont été caractérisés par diffraction des rayons X et se sont avérés appartenir au système quadratique. Leur comportement ferroélectrique spécifique a été confirmé par des mesures diélectriques. Une telle flexibilité des propriétés ferroélectriques de ces cristaux pour de faibles variations de composition ouvre la voie vers une meilleure compréhension des relations entre la structure et la polarisation dans ces solutions solides, qui sont potentiellement une alternative aux matériaux contenant du plomb.
We have grown by flux method centimeter-sized single crystals from pseudo-hexanary Li2O–Na2O–K2O–Nb2O5–Ta2O5–Sb2O3 system. Based on chemical analysis, crystals of compositions (Li0.023Na0.583K0.394)(Nb0.925Ta0.037Sb0.038)O3 and (Li0.034Na0.609K0.357)(Nb0.896Ta0.047Sb0.057)O3 were characterized by X-rays diffraction which revealed a tetragonal structure. The dielectric analysis confirmed that the ferroelectric behavior of these crystals is very sensitive to little changes in composition as previously observed on ceramics. Such high flexibility of the ferroelectric properties in crystals opens the way towards improved understanding of the relations between structure and polarization in solid solutions which may be an alternative to the lead-based materials.
Mots-clés : Cristallogenèse, Solution hautes températures, Composés inorganiques, Matériaux ferroélectriques
Mythili Prakasam 1 ; Philippe Veber 1 ; Oudomsack Viraphong 1 ; Laetitia Etienne 1 ; Michel Lahaye 1 ; Stanislav Pechev 1 ; Eric Lebraud 1 ; Kiyoshi Shimamura 2 ; Mario Maglione 1
@article{CRPHYS_2013__14_2-3_133_0, author = {Mythili Prakasam and Philippe Veber and Oudomsack Viraphong and Laetitia Etienne and Michel Lahaye and Stanislav Pechev and Eric Lebraud and Kiyoshi Shimamura and Mario Maglione}, title = {Growth and characterizations of lead-free ferroelectric {KNN-based} crystals}, journal = {Comptes Rendus. Physique}, pages = {133--140}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.10.002}, language = {en}, }
TY - JOUR AU - Mythili Prakasam AU - Philippe Veber AU - Oudomsack Viraphong AU - Laetitia Etienne AU - Michel Lahaye AU - Stanislav Pechev AU - Eric Lebraud AU - Kiyoshi Shimamura AU - Mario Maglione TI - Growth and characterizations of lead-free ferroelectric KNN-based crystals JO - Comptes Rendus. Physique PY - 2013 SP - 133 EP - 140 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.10.002 LA - en ID - CRPHYS_2013__14_2-3_133_0 ER -
%0 Journal Article %A Mythili Prakasam %A Philippe Veber %A Oudomsack Viraphong %A Laetitia Etienne %A Michel Lahaye %A Stanislav Pechev %A Eric Lebraud %A Kiyoshi Shimamura %A Mario Maglione %T Growth and characterizations of lead-free ferroelectric KNN-based crystals %J Comptes Rendus. Physique %D 2013 %P 133-140 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.10.002 %G en %F CRPHYS_2013__14_2-3_133_0
Mythili Prakasam; Philippe Veber; Oudomsack Viraphong; Laetitia Etienne; Michel Lahaye; Stanislav Pechev; Eric Lebraud; Kiyoshi Shimamura; Mario Maglione. Growth and characterizations of lead-free ferroelectric KNN-based crystals. Comptes Rendus. Physique, Crystal growth / Croissance cristalline, Volume 14 (2013) no. 2-3, pp. 133-140. doi : 10.1016/j.crhy.2012.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.002/
[1] Nature, 84 (2004), p. 432
[2] J. Korean Phys. Soc., 54 (2009), p. 896
[3] J. Korean Phys. Soc., 51 (2007), p. 810
[4] J. Korean Phys. Soc., 51 (2007), p. 697
[5] J. Appl. Phys., 39 (1968), p. 4749
[6] J. Korean Phys. Soc., 46 (2005), p. 151
[7] J. Am. Ceram. Soc., 45 (1959), p. 438
[8] Appl. Phys. Lett., 89 (2006), p. 062906
[9] Appl. Phys. Lett., 85 (2004), p. 994
[10] J. Appl. Phys., 100 (2006), p. 104108
[11] Appl. Phys. Lett., 90 (2007), p. 262903
[12] J. Electroceram., 19 (2007), p. 113
[13] Piezoelectric Ceramics, Academic, New York, 1971 (p. 136)
[14] Appl. Phys. Lett., 85 (2004), p. 4121
[15] Appl. Phys. Lett., 87 (2005), p. 182905
[16] Appl. Phys. Lett., 91 (2007), p. 202907
[17] J. Am. Ceram. Soc., 90 (2007), p. 1812
[18] Appl. Phys. Lett., 90 (2007), p. 242909
[19] Appl. Phys. Lett., 91 (2007), p. 172901
[20] Appl. Phys. Lett., 91 (2007), p. 262903
[21] J. Korean Phys. Soc., 56 (2010), p. 453
[22] Ferroelectrics, 176 (2009), p. 381
[23] Jpn. J. Appl. Phys., 42 (2003), p. 6110
[24] Appl. Phys. Lett., 90 (2007), p. 0629041
[25] Growth and characterization of single crystals of potassium sodium niobate by solid state crystal growth, Ferroelectrics – Material Aspects, Mickael Lallart Edition, 2011 (Chapter 5) (ISBN: 978-953-307-332-3)
[26] J. Eur. Ceram. Soc., 27 (2007), pp. 4103-4106
[27] J. Am. Ceram. Soc., 90 (2007), p. 1650
[28] Microsc. Microanal., 11 (2005), p. 572
[29] Mat. Res. Bul., 44 (2009), pp. 1188-1190
[30] Thermochim. Acta, 179 (1991), p. 157
[31] J. Cryst. Growth, 177 (1997), p. 211
[32] J. Am. Chem. Soc., 80 (1958), p. 1877
[33] J. Cryst. Growth, 131 (1993), p. 486
[34] J. Cryst. Growth, 197 (1999), p. 1012
[35] J. Cryst. Growth, 56 (1985), p. 673
[36] Cryst. Res. Technol., 38 (2003), p. 1015
[37] J. Cryst. Growth, 116 (1992), p. 27
[38] J. Am. Chem. Soc., 77 (1955), p. 4228
[39] D. Rytz, PhD thesis no 475, Ferroélectricité quantique dans KTa1 − xNbxO3, Ecole polytechnique federale de Lausanne, 1983.
[40] J. Cryst. Growth, 59 (1982), p. 468
[41] J. Cryst. Growth, 46 (1979), p. 274
[42] Solid State Commun., 44 (1982), p. 345
[43] J. Cryst. Growth, 194 (1998), p. 374
[44] J. Cryst. Growth, 35 (1976), p. 127
[45] Jpn. J. Appl. Phys., 9 (1970), p. 599
[46] J. Cryst. Growth, 6 (1970), p. 293
[47] Phys. Rev., 96 (1954), p. 581
[48] J. Cryst. Growth, 311 (2009), p. 4343
[49] Crystallogr. Rep., 48 (2003), p. 486
[50] J. Phys. D: Appl. Phys., 42 (2009), p. 125405
[51] J. Phys. D: Appl. Phys., 41 (2008), p. 095105
[52] Appl. Phys. Lett., 68 (1996), p. 744
[53] Piezoelectric Ceramics, Academic, New York, 1971
[54] J. Eur. Ceram. Soc., 24 (2004), p. 1521
[55] J. Phys. D: Appl. Phys., 42 (2009), p. 025402
[56] J. Eur. Ceram. Soc., 27 (2007), pp. 4125-4129
[57] Mater. Chem. Phys., 123 (2010), pp. 91-97
[58] Polar Oxides, Properties, Characterization, and Imaging, WILEY-VCH Verlag GmbH & Co. KGaA, 2005 (p. 139, Chapter 7)
[59] Phys. Rev. Lett., 103 (2009), p. 257602
- Current development, optimisation strategies and future perspectives for lead-free dielectric ceramics in high field and high energy density capacitors, Chemical Society Reviews, Volume 53 (2024) no. 21, p. 10761 | DOI:10.1039/d4cs00536h
- Bulk Crystal Growth and Properties of a (K,Na)NbO3 Single Crystal by the Czochralski Method, Crystal Growth Design, Volume 24 (2024) no. 2, p. 774 | DOI:10.1021/acs.cgd.3c01208
- Growth of Single Crystals of (K1−xNax)NbO3 by the Self-Flux Method and Characterization of Their Phase Transitions, Materials, Volume 17 (2024) no. 17, p. 4195 | DOI:10.3390/ma17174195
- High quality crystal growth and characterization of ferroelectric Ba0.77Ca0.23TiO3 single crystal, Journal of Advanced Dielectrics, Volume 13 (2023) no. 02 | DOI:10.1142/s2010135x23500054
- Correlation between thermal properties, growth parameters and low segregation coefficient in (K, Na)NbO3-based growth by Bridgman-Stockbarger route, Materialia, Volume 32 (2023), p. 101935 | DOI:10.1016/j.mtla.2023.101935
- Hydrothermal synthesis of potassium–sodium niobate powders, Journal of the American Ceramic Society, Volume 105 (2022) no. 6, p. 3809 | DOI:10.1111/jace.18349
- Microstructure and electrical properties of CuO-doped K0.5Na0.5NbO3-based single crystals with low dielectric loss, Journal of Materials Research, Volume 36 (2021) no. 5, p. 1182 | DOI:10.1557/s43578-020-00015-2
- Highly textured lead-free piezoelectric polycrystals grown by the micro-pulling down freezing technique in the BaTiO3–CaTiO3system, CrystEngComm, Volume 22 (2020) no. 30, p. 4982 | DOI:10.1039/d0ce00657b
- (K,Na)NbO3-based piezoelectric single crystals: Growth methods, properties, and applications, Journal of Materials Research, Volume 35 (2020) no. 8, p. 990 | DOI:10.1557/jmr.2019.391
- Lead-free piezoelectric crystals grown by the micro-pulling down technique in the BaTiO3–CaTiO3–BaZrO3 system, CrystEngComm, Volume 21 (2019) no. 25, p. 3844 | DOI:10.1039/c9ce00405j
- High-performance piezoelectric (K,Na,Li)(Nb,Ta,Sb)O3 single crystals by oxygen annealing, Acta Materialia, Volume 148 (2018), p. 499 | DOI:10.1016/j.actamat.2018.02.026
- Spinodal Decomposition in Lead-free Piezoelectric BaTiO3–CaTiO3–BaZrO3 Crystals, Crystal Growth Design, Volume 18 (2018) no. 10, p. 5874 | DOI:10.1021/acs.cgd.8b00596
- Orientation-dependent electromechanical properties of Mn-doped (Li,Na,K)(Nb,Ta)O3 single crystals, Applied Physics Letters, Volume 109 (2016) no. 15 | DOI:10.1063/1.4964465
- Influence of Ta5+ content on the crystallographic structure and electrical properties of [001]PC-oriented (Li,Na,K)(Nb,Ta)O3 single crystals, CrystEngComm, Volume 18 (2016) no. 12, p. 2081 | DOI:10.1039/c5ce02581h
- Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries, Chemical Reviews, Volume 115 (2015) no. 7, p. 2559 | DOI:10.1021/cr5006809
- Growth and characterization of lead-free ferroelectric (K,Na,Li)(Nb,Ta,Sb)O3 single crystal, Journal of Crystal Growth, Volume 409 (2015), p. 39 | DOI:10.1016/j.jcrysgro.2014.09.041
- Growth and Characterization of Lead-free Piezoelectric Single Crystals, Materials, Volume 8 (2015) no. 11, p. 7962 | DOI:10.3390/ma8115436
- , 13th International Ceramics Congress - Part D, Volume 90 (2014), p. 25 | DOI:10.4028/www.scientific.net/ast.90.25
- A high quality lead-free (Li, Ta) modified (K, Na)NbO3single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4mm symmetry, CrystEngComm, Volume 16 (2014) no. 42, p. 9828 | DOI:10.1039/c4ce01208a
- Dielectric, piezoelectric properties of MnO2-doped (K0.5Na0.5)NbO3–0.05LiNbO3 crystal grown by flux-Bridgman method, Journal of Alloys and Compounds, Volume 603 (2014), p. 95 | DOI:10.1016/j.jallcom.2014.03.006
- Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO3-BaZrO3-CaTiO3 single crystals, Journal of Applied Physics, Volume 115 (2014) no. 14 | DOI:10.1063/1.4870933
- Growth and properties of Li, Ta modified (K,Na)NbO3 lead‐free piezoelectric single crystals, physica status solidi (RRL) – Rapid Research Letters, Volume 8 (2014) no. 1, p. 86 | DOI:10.1002/pssr.201308173
Cité par 22 documents. Sources : Crossref
Commentaires - Politique