Comptes Rendus
Growth and characterizations of lead-free ferroelectric KNN-based crystals
[Cristallogenèse et caractérisations de monocristaux ferroélectriques sans plomb à base de KNN]
Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 133-140.

Des monocristaux centimétriques issus du système Li2O–Na2O–K2O–Nb2O5–Ta2O5–Sb2O3 ont été obtenus par la méthode des flux. Les cristaux de composition (Li0.023Na0.583K0.394)(Nb0.925Ta0.037Sb0.038)O3 et (Li0.034Na0.609K0.357)(Nb0.896Ta0.047Sb0.057)O3 ont été caractérisés par diffraction des rayons X et se sont avérés appartenir au système quadratique. Leur comportement ferroélectrique spécifique a été confirmé par des mesures diélectriques. Une telle flexibilité des propriétés ferroélectriques de ces cristaux pour de faibles variations de composition ouvre la voie vers une meilleure compréhension des relations entre la structure et la polarisation dans ces solutions solides, qui sont potentiellement une alternative aux matériaux contenant du plomb.

We have grown by flux method centimeter-sized single crystals from pseudo-hexanary Li2O–Na2O–K2O–Nb2O5–Ta2O5–Sb2O3 system. Based on chemical analysis, crystals of compositions (Li0.023Na0.583K0.394)(Nb0.925Ta0.037Sb0.038)O3 and (Li0.034Na0.609K0.357)(Nb0.896Ta0.047Sb0.057)O3 were characterized by X-rays diffraction which revealed a tetragonal structure. The dielectric analysis confirmed that the ferroelectric behavior of these crystals is very sensitive to little changes in composition as previously observed on ceramics. Such high flexibility of the ferroelectric properties in crystals opens the way towards improved understanding of the relations between structure and polarization in solid solutions which may be an alternative to the lead-based materials.

Publié le :
DOI : 10.1016/j.crhy.2012.10.002
Keywords: High temperature solution growth, Inorganic compound, Ferroelectric materials
Mot clés : Cristallogenèse, Solution hautes températures, Composés inorganiques, Matériaux ferroélectriques

Mythili Prakasam 1 ; Philippe Veber 1 ; Oudomsack Viraphong 1 ; Laetitia Etienne 1 ; Michel Lahaye 1 ; Stanislav Pechev 1 ; Eric Lebraud 1 ; Kiyoshi Shimamura 2 ; Mario Maglione 1

1 ICMCB Université de Bordeaux, CNRS, 87, avenue du Docteur-Albert-Schweitzer, 33608 Pessac cedex, France
2 National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
@article{CRPHYS_2013__14_2-3_133_0,
     author = {Mythili Prakasam and Philippe Veber and Oudomsack Viraphong and Laetitia Etienne and Michel Lahaye and Stanislav Pechev and Eric Lebraud and Kiyoshi Shimamura and Mario Maglione},
     title = {Growth and characterizations of lead-free ferroelectric {KNN-based} crystals},
     journal = {Comptes Rendus. Physique},
     pages = {133--140},
     publisher = {Elsevier},
     volume = {14},
     number = {2-3},
     year = {2013},
     doi = {10.1016/j.crhy.2012.10.002},
     language = {en},
}
TY  - JOUR
AU  - Mythili Prakasam
AU  - Philippe Veber
AU  - Oudomsack Viraphong
AU  - Laetitia Etienne
AU  - Michel Lahaye
AU  - Stanislav Pechev
AU  - Eric Lebraud
AU  - Kiyoshi Shimamura
AU  - Mario Maglione
TI  - Growth and characterizations of lead-free ferroelectric KNN-based crystals
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 133
EP  - 140
VL  - 14
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.10.002
LA  - en
ID  - CRPHYS_2013__14_2-3_133_0
ER  - 
%0 Journal Article
%A Mythili Prakasam
%A Philippe Veber
%A Oudomsack Viraphong
%A Laetitia Etienne
%A Michel Lahaye
%A Stanislav Pechev
%A Eric Lebraud
%A Kiyoshi Shimamura
%A Mario Maglione
%T Growth and characterizations of lead-free ferroelectric KNN-based crystals
%J Comptes Rendus. Physique
%D 2013
%P 133-140
%V 14
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2012.10.002
%G en
%F CRPHYS_2013__14_2-3_133_0
Mythili Prakasam; Philippe Veber; Oudomsack Viraphong; Laetitia Etienne; Michel Lahaye; Stanislav Pechev; Eric Lebraud; Kiyoshi Shimamura; Mario Maglione. Growth and characterizations of lead-free ferroelectric KNN-based crystals. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 133-140. doi : 10.1016/j.crhy.2012.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.002/

[1] Y. Saito; H. Takao; T. Tani; T. Nonoyama; K. Takatori; T. Homma; T. Nagaya; M. Nakamura Nature, 84 (2004), p. 432

[2] H.-G. Yeo; Y.-S. Sung; T.K. Song; J.-H. Cho; M.-H. Kim; T.-G. Park J. Korean Phys. Soc., 54 (2009), p. 896

[3] J. Abe; M. Kobune; K. Kitada; T. Yazawa; H. Masumoto; T. Goto J. Korean Phys. Soc., 51 (2007), p. 810

[4] T.K. Song; M.-H. Kim; Y.-S. Sung; H.G. Yeo; S.H. Lee; S.-J. Jeong; J.-S. Song J. Korean Phys. Soc., 51 (2007), p. 697

[5] V.J. Tennery; K.W. Hang J. Appl. Phys., 39 (1968), p. 4749

[6] D.H. Cho; M.K. Ryu; S.S. Park; S.Y. Cho; J.G. Choi; M.S. Jang; J.P. Kim; C.R. Cho J. Korean Phys. Soc., 46 (2005), p. 151

[7] L. Egerton; D.M. Dillon J. Am. Ceram. Soc., 45 (1959), p. 438

[8] H.Y. Park; C.W. Ahn; H.C. Song; J.H. Lee; S. Nahm; K. Uchino; H.J. Lee Appl. Phys. Lett., 89 (2006), p. 062906

[9] V. Bobnar; J. Bernard; M. Kosec Appl. Phys. Lett., 85 (2004), p. 994

[10] S. Zhang; R. Xia; T.R. Shout; G. Zang; J. Wang J. Appl. Phys., 100 (2006), p. 104108

[11] Y. Dai; X. Zhang; G. Zhou Appl. Phys. Lett., 90 (2007), p. 262903

[12] T.R. Shrout; S.J. Zhang J. Electroceram., 19 (2007), p. 113

[13] B. Jaffe; W. Cook; H. Jaffe Piezoelectric Ceramics, Academic, New York, 1971 (p. 136)

[14] Y. Guo; K. Kakimoto; H. Ohsato Appl. Phys. Lett., 85 (2004), p. 4121

[15] E. Hollenstein; M. Davis; D. Damjanovic; N. Setter Appl. Phys. Lett., 87 (2005), p. 182905

[16] H.L. Du; W.C. Zhou; F. Luo; D.M. Zhu; S.B. Qu; Z.B. Pei Appl. Phys. Lett., 91 (2007), p. 202907

[17] H.C. Song; K.H. Cho; H.Y. Park; C.W. Ahn; S. Nahm; K. Uchino; S.H. Park; H.G. Lee J. Am. Ceram. Soc., 90 (2007), p. 1812

[18] P. Zhao; B.-P. Zhang; J.-F. Li Appl. Phys. Lett., 90 (2007), p. 242909

[19] P. Zhao; B.-P. Zhang; J.-F. Li Appl. Phys. Lett., 91 (2007), p. 172901

[20] K. Wang; J.-F. Li Appl. Phys. Lett., 91 (2007), p. 262903

[21] S.C. Lee; H.-G. Yeo; J.H. Cho; Y.S. Sung; M.-H. Kim; T.K. Song; S.S. Kim; B.C. Choi; K.-S. Choi J. Korean Phys. Soc., 56 (2010), p. 453

[22] S.C. Lee; L. Wang; H.-G. Yeo; J.H. Cho; Y.S. Sung; M.-H. Kim; T.K. Song; S.S. Kim; B.C. Choi Ferroelectrics, 176 (2009), p. 381

[23] T. Wada; K. Tsuji; T. Saito; Y. Matsuo; H. Adachi Jpn. J. Appl. Phys., 42 (2003), p. 6110

[24] M. Davis; N. Klein; D. Damjanovič; N. Setter Appl. Phys. Lett., 90 (2007), p. 0629041

[25] A. Bencan; E. Tchernychova; H. Ursic; M. Kosec; J. Fisher Growth and characterization of single crystals of potassium sodium niobate by solid state crystal growth, Ferroelectrics – Material Aspects, Mickael Lallart Edition, 2011 (Chapter 5) (ISBN: 978-953-307-332-3)

[26] J.G. Fisher; A. Benčan; J. Bernard; J. Holc; M. Kosec; S. Vernay; D. Rytz J. Eur. Ceram. Soc., 27 (2007), pp. 4103-4106

[27] P. Bomlai; P. Wichianrat; S. Muensit; S.J. Milne J. Am. Ceram. Soc., 90 (2007), p. 1650

[28] D. Jenko; A. Benčan; B. Malič; J. Holc; M. Kosec Microsc. Microanal., 11 (2005), p. 572

[29] J. Fu; R. Zuo; X. Fang; K. Liu Mat. Res. Bul., 44 (2009), pp. 1188-1190

[30] E. Irle; R. Blachnik; B. Gather Thermochim. Acta, 179 (1991), p. 157

[31] K. Polgar; A. Peter; L. Kovacs; G. Corradi; Zs. Szaller J. Cryst. Growth, 177 (1997), p. 211

[32] A. Reisman; E. Banks J. Am. Chem. Soc., 80 (1958), p. 1877

[33] R. Hofmeister; A. Yariv; A. Agranat J. Cryst. Growth, 131 (1993), p. 486

[34] Q. Guan; X. Hu; J. Wei; J. Wang; L. Tian; W. Cui; Y. Liu J. Cryst. Growth, 197 (1999), p. 1012

[35] J.J. Van Der Klink; D. Rytz J. Cryst. Growth, 56 (1985), p. 673

[36] S. Podlojenov; M. Burianek; M. Mühlberg Cryst. Res. Technol., 38 (2003), p. 1015

[37] J.Y. Wang; Q.C. Guan; J.Q. Wei; M. Wang; Y.G. Liu J. Cryst. Growth, 116 (1992), p. 27

[38] A. Reisman; S. Triebwasser; F. Holtzberg J. Am. Chem. Soc., 77 (1955), p. 4228

[39] D. Rytz, PhD thesis no 475, Ferroélectricité quantique dans KTa1 − xNbxO3, Ecole polytechnique federale de Lausanne, 1983.

[40] D. Rytz; H.J. Scheel J. Cryst. Growth, 59 (1982), p. 468

[41] M. Badurski J. Cryst. Growth, 46 (1979), p. 274

[42] A. Sadel; R. Von der Muhll; J. Ravez; J.P. Chaminade; P. Hagenmuller Solid State Commun., 44 (1982), p. 345

[43] V.I. Chani; K. Nagata; T. Kawaguchi; M. Imaeda; T. Fukuda J. Cryst. Growth, 194 (1998), p. 374

[44] T. Fukuda; H. Hirano J. Cryst. Growth, 35 (1976), p. 127

[45] T. Fukuda Jpn. J. Appl. Phys., 9 (1970), p. 599

[46] T. Fukuda; H. Hirano; S. Koide J. Cryst. Growth, 6 (1970), p. 293

[47] G. Shirane; R. Newnham; P. Pepinsky Phys. Rev., 96 (1954), p. 581

[48] M. Ferriol; M. Cochez; M. Aillerie J. Cryst. Growth, 311 (2009), p. 4343

[49] I.P. Raevskii; L.A. Reznichenko; M.P. Ivliev; V.G. Smotrakov; V.V. Eremkin; M.A. Malitskaya; L.A. Shilkina; S.I. Shevtsova; A.V. Borodin Crystallogr. Rep., 48 (2003), p. 486

[50] Z. Zhou; J. Li; H. Tian; Z. Wang; Y. Li; R. Zhang J. Phys. D: Appl. Phys., 42 (2009), p. 125405

[51] H. Tian; Z. Zhou; D. Gong; H. Wang; D. Liu; C. Hou J. Phys. D: Appl. Phys., 41 (2008), p. 095105

[52] Y. Furukawa; S. Makio; T. Miyai; M. Sato; H. Kitayama; Y. Urata; T. Tamiuchi; T. Fukuda Appl. Phys. Lett., 68 (1996), p. 744

[53] B. Jaffe; W. Cook; H. Jaffe Piezoelectric Ceramics, Academic, New York, 1971

[54] B. Jiménez; R. Jiménez; A. Castro; L. Pardo J. Eur. Ceram. Soc., 24 (2004), p. 1521

[55] D.A. Ochoa; J.E. García; R. Pérez; V. Gomis; A. Albareda; F. Rubio-Marcos; J.F. Fernández J. Phys. D: Appl. Phys., 42 (2009), p. 025402

[56] F. Rubio-Marcos; P. Ochoa; J.F. Fernandez J. Eur. Ceram. Soc., 27 (2007), pp. 4125-4129

[57] F. Rubio-Marcos; P. Marchet; T. Merle-Méjean; J.F. Fernandez Mater. Chem. Phys., 123 (2010), pp. 91-97

[58] R. Waser; U. Böttger; S. Tiedke Polar Oxides, Properties, Characterization, and Imaging, WILEY-VCH Verlag GmbH & Co. KGaA, 2005 (p. 139, Chapter 7)

[59] W. Liu; X. Ren Phys. Rev. Lett., 103 (2009), p. 257602

Cité par Sources :

Commentaires - Politique