Multi-crystalline silicon solidification is investigated by performing directional solidification experiments. Twinning phenomenon has been identified and observed in situ and in real time during the solidification using X-ray synchrotron imaging techniques: radiography and topography. The radiography observations give information on the formation, birth localized at the interface and evolution of the twins during solidification. The topography results give further information on the grain arrangement and on new grains in twinned position and grain growth competition. We have evidenced two twinning mechanisms: the first is the multiple twin formations during the growth of one grain. The second is the nucleation of a grain in twinned position at the bottom of a grain boundary groove.
La solidification du silicium multi-cristallin a été étudiée en menant à bien des expériences de solidification dirigée. Le phénomène de maclage a été identifié et observé in situ et en temps réel pendant la solidification, en utilisant des techniques dʼimagerie X synchrotron : radiographie et topographie. Les observations par radiographie donnent des informations concernant la formation, la localisation à lʼinterface et lʼévolution des macles au cours de la solidification. Les résultats de topographie donnent des informations complémentaires sur lʼarrangement des grains et sur la compétition de croissance des macles et des grains. Nous avons montré lʼexistence de deux mécanismes de maclage : la formation de macles multiples pendant la croissance dʼun grain et la germination dʼune macle unique dans le sillon dʼun joint de grains.
Mot clés : Silicium, Solidification, Radiographie X, Synchrotron, Macles, Compétition de grains
Amina Tandjaoui 1, 2; Nathalie Mangelinck-Noel 1, 2; Guillaume Reinhart 1, 2; Bernard Billia 1, 2; Xavier Guichard 3
@article{CRPHYS_2013__14_2-3_141_0, author = {Amina Tandjaoui and Nathalie Mangelinck-Noel and Guillaume Reinhart and Bernard Billia and Xavier Guichard}, title = {Twinning occurrence and grain competition in multi-crystalline silicon during solidification}, journal = {Comptes Rendus. Physique}, pages = {141--148}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.12.001}, language = {en}, }
TY - JOUR AU - Amina Tandjaoui AU - Nathalie Mangelinck-Noel AU - Guillaume Reinhart AU - Bernard Billia AU - Xavier Guichard TI - Twinning occurrence and grain competition in multi-crystalline silicon during solidification JO - Comptes Rendus. Physique PY - 2013 SP - 141 EP - 148 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.12.001 LA - en ID - CRPHYS_2013__14_2-3_141_0 ER -
%0 Journal Article %A Amina Tandjaoui %A Nathalie Mangelinck-Noel %A Guillaume Reinhart %A Bernard Billia %A Xavier Guichard %T Twinning occurrence and grain competition in multi-crystalline silicon during solidification %J Comptes Rendus. Physique %D 2013 %P 141-148 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.12.001 %G en %F CRPHYS_2013__14_2-3_141_0
Amina Tandjaoui; Nathalie Mangelinck-Noel; Guillaume Reinhart; Bernard Billia; Xavier Guichard. Twinning occurrence and grain competition in multi-crystalline silicon during solidification. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 141-148. doi : 10.1016/j.crhy.2012.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.12.001/
[1] et al. State-of-the-art growth of silicon for PV applications, J. Cryst. Growth, Volume 360 (2012), pp. 56-60
[2] et al. Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Mater., Volume 57 (2009), p. 3268
[3] et al. Growth and characterization of multi-crystalline silicon ingots by directional solidification for solar cell applications, Energy Procedia, Volume 8 (2011), p. 371
[4] et al. Grain control using spot cooling in multi-crystalline silicon crystal growth, J. Cryst. Growth, Volume 311 (2009), p. 263
[5] et al. Factors limiting minority carrier lifetime in solar grade silicon produced by metallurgical route, Sol. Energy Mater. Sol. Cells, Volume 95 (2011), p. 564
[6] et al. Directional growth method to obtain high quality polycrystalline silicon from its melt, J. Cryst. Growth, Volume 292 (2006), p. 282
[7] C.W. Lan, et al., Grain control in directional solidification of photovoltaic silicon, J. Cryst. Growth (2012), in press.
[8] et al. Implementation of faceted dendrite growth on floating cast method to realize high-quality multicrystalline Si ingot for solar cells, J. Appl. Phys., Volume 109 (2011)
[9] et al. Growth of multi-crystalline Si ingots using non-contact crucible method for reduction of stress, J. Cryst. Growth, Volume 344 (2012), p. 6
[10] T. Duffar, in: Recent Research Developments in Crystal Growth, vol. 5, 2010, pp. 61–113.
[11] Acta Mater., 58 (2010), pp. 3223-3229
[12] et al. Real time observation of the directional solidification of multi-crystalline silicon: X-ray imaging characterization, Energy Procedia, Volume 27 (2012), pp. 82-87
[13] et al. In situ observations of crystal growth behavior of silicon melt, J. Cryst. Growth, Volume 243 (2002), p. 275
[14] et al. Formation mechanism of parallel twins related to Si-facetted dendrite growth, Scr. Mater., Volume 57 (2007), p. 81
[15] Scr. Mater., 72 (2010), pp. 955-960
[16] et al. Formation of parallel (111) twin boundaries in silicon growth from the melt explained by molecular dynamics simulations, J. Cryst. Growth, Volume 312 (2010), p. 1411
Cited by Sources:
Comments - Policy