Comptes Rendus
Structures and statistics of fluid turbulence / Structures et statistiques de la turbulence des fluides
Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results
Comptes Rendus. Physique, Volume 13 (2012) no. 9-10, pp. 954-965.

The Gross–Pitaevskii equation (GPE) describes the dynamics of superflows and Bose–Einstein Condensates (BEC) at very low temperature. When a truncation of Fourier modes is performed, the resulting truncated GPE (TGPE) can also describe the correct thermal behavior of a Bose gas, as long as all relevant modes are highly occupied [M.J. Davis, S.A. Morgan, K. Burnett, Simulations of Bose fields at finite temperature, Phys. Rev. Lett. 87 (16) (2001) 160402]. We review some of our groupʼs recent GPE- and TGPE-based numerical studies of superfluid dynamics and BEC stability. The relations with experiments are discussed.

Lʼéquation de Gross–Pitaevskii (GPE) décrit la dynamique des superfluides et les condensats de Bose–Einstein (BEC) à très basse température. Quand une troncature des modes de Fourier est effectuée, lʼéquation résultante tronquée (TGPE) peut également décrire le comportement thermique correct dʼun gaz de Bose, à condition que tous les modes concernés sont hautement occupés [M.J. Davis, S.A. Morgan, K. Burnett, Simulations of Bose fields at finite temperature, Phys. Rev. Lett. 87 (16) (2001) 160402]. Nous passons en revue quelques études numériques récentes faites par notre groupe, utilisant GPE et TGPE, de la dynamique des superfluides et de la stabilité des BEC. Les relations avec les expériences sont discutées.

Published online:
DOI: 10.1016/j.crhy.2012.10.006
Keywords: Turbulence, Superfluidity, Counterflow
Mot clés : Turbulence, Superfuidité, Contre-écoulement

Marc Brachet 1

1 Laboratoire de physique statistique de lʼÉcole normale supérieure, associé au CNRS et aux Universités Paris VI et VII, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRPHYS_2012__13_9-10_954_0,
     author = {Marc Brachet},
     title = {Gross{\textendash}Pitaevskii description of superfluid dynamics at finite temperature: {A} short review of recent results},
     journal = {Comptes Rendus. Physique},
     pages = {954--965},
     publisher = {Elsevier},
     volume = {13},
     number = {9-10},
     year = {2012},
     doi = {10.1016/j.crhy.2012.10.006},
     language = {en},
}
TY  - JOUR
AU  - Marc Brachet
TI  - Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 954
EP  - 965
VL  - 13
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.10.006
LA  - en
ID  - CRPHYS_2012__13_9-10_954_0
ER  - 
%0 Journal Article
%A Marc Brachet
%T Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results
%J Comptes Rendus. Physique
%D 2012
%P 954-965
%V 13
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2012.10.006
%G en
%F CRPHYS_2012__13_9-10_954_0
Marc Brachet. Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results. Comptes Rendus. Physique, Volume 13 (2012) no. 9-10, pp. 954-965. doi : 10.1016/j.crhy.2012.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.006/

[1] M. Abid; C. Huepe; S. Metens; C. Nore; C.T. Pham; L.S. Tuckerman; M.E. Brachet Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res., Volume 33 (2003) no. 5–6, p. 509

[2] C.T. Pham; C. Nore; M.E. Brachet Boundary layers in Gross–Pitaevskii superflow around a disk, C. R. Physique, Volume 5 (2004) no. 1, pp. 3-8

[3] C.T. Pham; C. Nore; M. Brachet Boundary layers and emitted excitations in nonlinear Schrödinger superflow past a disk, Physica D, Volume 210 (2005) no. 3–4, pp. 203-226

[4] G. Krstulovic; M. Brachet; E. Tirapegui Radiation and vortex dynamics in the nonlinear Schrödinger equation, Phys. Rev. E, Volume 78 (2008), p. 026601

[5] G. Krstulovic; M. Brachet Comment on “Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades”, Phys. Rev. Lett., Volume 105 (2010), p. 129401

[6] T.D. Lee On some statistical properties of hydrodynamical and magneto-hydrodynamical fields, Quart. Appl. Math., Volume 10 (1952) no. 1, pp. 69-74

[7] R. Kraichnan On the statistical mechanics of an adiabatically compressible fluid, J. Acoust. Soc. Am., Volume 27 (1955) no. 3, pp. 438-441

[8] R. Kraichnan Helical turbulence and absolute equilibrium, J. Fluid Mech., Volume 59 (1973), pp. 745-752

[9] S.A. Orszag Statistical theory of turbulence, Les Houches, 1973 (1977)

[10] C. Cichowlas; P. Bonaïti; F. Debbasch; M. Brachet Effective dissipation and turbulence in spectrally truncated Euler flows, Phys. Rev. Lett., Volume 95 (2005) no. 26, p. 264502

[11] G. Krstulovic; M. Brachet Two-fluid model of the truncated Euler equations, Physica D: Nonlinear Phenom., Volume 237 (2008) no. 14–17, pp. 2015-2019

[12] G. Krstulovic; P.D. Mininni; M.E. Brachet; A. Pouquet Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows, Phys. Rev. E ( May 2009 ), pp. 1-5

[13] G. Krstulovic; C. Cartes; M. Brachet; E. Tirapegui Generation and characterization of absolute equilibrium of compressible flows, Int. J. Bifurc. Chaos, Volume 19 (2009) no. 10, pp. 3445-3459

[14] N.P. Proukakis; B. Jackson Finite-temperature models of Bose–Einstein condensation, J. Phys. B: At. Mol. Opt. Phys., Volume 41 (2008), p. 203002

[15] M.J. Davis; S.A. Morgan; K. Burnett Simulations of Bose fields at finite temperature, Phys. Rev. Lett., Volume 87 (2001) no. 16, p. 160402

[16] G. Krstulovic; M.E. Brachet Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross–Pitaevskii equation, Phys. Rev. E, Volume 83 (2011), p. 066311

[17] G. Krstulovic; M.E. Brachet Dispersive bottleneck delaying thermalization of turbulent Bose–Einstein condensates, Phys. Rev. Lett., Volume 106 (2011), p. 115303

[18] G. Krstulovic; M.E. Brachet Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow effects in superfluids, Phys. Rev. B, Volume 83 (2011), p. 132506

[19] R.J. Donnelly Quantized Vortices in Helium II, Cambridge Univ. Press, Cambridge, 1991

[20] E.P. Gross Structure of a quantized vortex in boson systems, Nuovo Cimento, Volume 20 (1961) no. 3

[21] L.P. Pitaevskii Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961) no. 2

[22] L. Landau; E. Lifchitz Fluid Mechanics, Pergamon Press, Oxford, 1980

[23] M.H. Anderson; J.R. Ensher; M.R. Matthews; C.E. Wieman; E.A. Cornell Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995), p. 198

[24] K.B. Davis; M.O. Mewes; M.R. Adrews; N.J. van Druten; D.S. Durfee; D.M. Kurn; W. Ketterle Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., Volume 75 (1995), p. 3969

[25] C.C. Bradley; C.A. Sackett; R.G. Hulet Bose–Einstein condensation of lithium: Observation of limited condensate number, Phys. Rev. Lett., Volume 78 (1997) no. 6, p. 985

[26] F. Dalfovo; S. Giorgini; L.P. Pitaevskii; S. Stringari Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999) no. 3

[27] Y. Pomeau; S. Rica Model of superflow with rotons, Phys. Rev. Lett., Volume 71 (1993) no. 2, p. 247

[28] C. Huepe; M.E. Brachet Scaling laws for vortical nucleation solutions in a model of superflow, Physica D, Volume 140 (2000), pp. 126-140

[29] D. Gottlieb; S.A. Orszag Numerical Analysis of Spectral Methods, SIAM, Philadelphia, 1977

[30] C. Connaughton; C. Josserand; A. Picozzi; Y. Pomeau; S. Rica Condensation of classical nonlinear waves, Phys. Rev. Lett., Volume 95 (2005) no. 26, p. 263901

[31] G. Düring; A. Picozzi; S. Rica Breakdown of weak-turbulence and nonlinear wave condensation, Physica D, Volume 238 (2009) no. 16, pp. 1524-1549

[32] N.G. Berloff; A.J. Youd Dissipative dynamics of superfluid vortices at nonzero temperatures, Phys. Rev. Lett., Volume 99 (2007) no. 14

[33] D.J. Amit, Field Theory: The Renormalization Group and Critical Phenomena, World Scientific Publishing Company, 2005.

[34] J. Zinn-Justin Phase Transitions and Renormalisation Group, Oxford University Press, USA, 2007

[35] C. Nore; M. Abid; M.E. Brachet Kolmogorov turbulence in low-temperature superflows, Phys. Rev. Lett., Volume 78 (1997) no. 20, pp. 3896-3899

[36] C. Nore; M. Abid; M. Brachet Decaying Kolmogorov turbulence in a model of superflow, Phys. Fluids, Volume 9 (1997) no. 9, p. 2644

[37] J. Salort; P.-E. Roche; E. Leveque Mesoscale equipartition of kinetic energy in quantum turbulence, EPL (Europhys. Lett.), Volume 94 (2011) no. 2, p. 24001

[38] L. Kiknadze; Y. Mamaladze The waves on the vortex ring in He II, J. Low Temp. Phys., Volume 126 (2002) no. 1–2, pp. 321-326

[39] C.F. Barenghi; R. Hanninen; M. Tsubota Anomalous translational velocity of vortex ring with finite-amplitude Kelvin waves, Phys. Rev. E, Volume 74 (2006) no. 4, p. 046303

Cited by Sources:

Comments - Policy