Comptes Rendus
Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae
[Éléments physiques multiples déterminant les signatures des ondes gravitationnelles de supernovas à effondrement de cœur]
Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 318-351.

Nous passons en revue les progrès récents en matière de prédiction théorique dʼémission dʼondes gravitationnelles par les supernovae gravitationnelles. Après un bref survol des méthodes numériques, nous récapitulons les éléments physiques qui déterminent les signatures en ondes gravitationnelles considérées comme essentielles pour extraire les informations encore cachées à lʼobservation du mécanisme dʼexplosion de supernova. Nous concluons par un résumé des tâches urgents à accomplir pour que ce rêve devienne réalité.

We review recent progress in the theoretical predictions of gravitational waves (GWs) of core-collapse supernovae. Following a brief summary of the methods in the numerical modeling, we summarize multiple physical elements that determine the GW signatures which have been considered to be important in extracting the information of the long-veiled explosion mechanism from the observation of the GWs. We conclude with a summary of the most urgent tasks to make the dream come true.

Publié le :
DOI : 10.1016/j.crhy.2013.01.008
Keywords: Supernovae, Radiation-hydrodynamics, Gravitational wave physics, Neutrino physics
Mot clés : Supernovas, Hydrodynamique radiative, Physique des ondes gravitationnelles, Physique des neutrinos
Kei Kotake 1, 2

1 Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan
2 Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
@article{CRPHYS_2013__14_4_318_0,
     author = {Kei Kotake},
     title = {Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae},
     journal = {Comptes Rendus. Physique},
     pages = {318--351},
     publisher = {Elsevier},
     volume = {14},
     number = {4},
     year = {2013},
     doi = {10.1016/j.crhy.2013.01.008},
     language = {en},
}
TY  - JOUR
AU  - Kei Kotake
TI  - Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 318
EP  - 351
VL  - 14
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.01.008
LA  - en
ID  - CRPHYS_2013__14_4_318_0
ER  - 
%0 Journal Article
%A Kei Kotake
%T Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae
%J Comptes Rendus. Physique
%D 2013
%P 318-351
%V 14
%N 4
%I Elsevier
%R 10.1016/j.crhy.2013.01.008
%G en
%F CRPHYS_2013__14_4_318_0
Kei Kotake. Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 318-351. doi : 10.1016/j.crhy.2013.01.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.01.008/

[1] S. Ando; J.F. Beacom; H. Yüksel Detection of neutrinos from supernovae in nearby galaxies, Phys. Rev. Lett., Volume 95 (2005) no. 17, p. 171101 | arXiv | DOI

[2] K. Hirata; T. Kajita; M. Koshiba; M. Nakahata; Y. Oyama Observation of a neutrino burst from the supernova SN1987A, Phys. Rev. Lett., Volume 58 (1987), pp. 1490-1493 | DOI

[3] R.M. Bionta; G. Blewitt; C.B. Bratton; D. Casper; A. Ciocio Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud, Phys. Rev. Lett., Volume 58 (1987), pp. 1494-1496 | DOI

[4] K. Sato; H. Suzuki Analysis of the neutrino burst from supernova 1987A in the Large Magellanic Cloud, Phys. Rev. Lett., Volume 58 (1987), pp. 2722-2725 | DOI

[5] G.G. Raffelt Physics with supernovae, Nucl. Phys., B Proc. Suppl., Volume 110 (2002), pp. 254-267 | arXiv | DOI

[6] Y. Totsuka Neutrino astronomy, Rep. Progr. Phys., Volume 55 (1992), pp. 377-430 | DOI

[7] T. Totani; K. Sato; H.E. Dalhed; J.R. Wilson Future detection of supernova neutrino burst and explosion mechanism, Astrophys. J., Volume 496 (1998), p. 216 | arXiv | DOI

[8] J.F. Beacom Supernovae and neutrinos, Nucl. Phys., B Proc. Suppl., Volume 118 (2003), pp. 307-314 | arXiv | DOI

[9] G.G. Raffelt Physics opportunities with supernova neutrinos, Prog. Part. Nucl. Phys., Volume 64 (2010), pp. 393-399 | DOI

[10] M. Abbott et al. Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts, Phys. Rev. D, Volume 72 (2005) no. 12, p. 122004 | arXiv | DOI

[11] M. Ando; the TAMA Collaboration Current status of the TAMA300 gravitational-wave detector, Class. Quantum Gravity, Volume 22 (2005), p. 881 | DOI

[12] J. Hough; S. Rowan; B.S. Sathyaprakash The search for gravitational waves, J. Phys. B, Volume 38 (2005), p. 497 | arXiv | DOI

[13] M. van der Sluys, Gravitational waves from compact binaries, . | arXiv

[14] G.M. Harry; the LIGO Scientific Collaboration Advanced LIGO: the next generation of gravitational wave detectors, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084006 | DOI

[15] K. Kuroda; LCGT Collaboration Status of LCGT, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084004 | DOI

[16] B.S. Sathyaprakash; B.F. Schutz Physics, astrophysics and cosmology with gravitational waves, Living Rev. Relativ., Volume 12 (2009), p. 2 | arXiv

[17] J. Faber Status of neutron star-black hole and binary neutron star simulations, Class. Quantum Gravity, Volume 26 (2009) no. 11, p. 114004 | DOI

[18] M.D. Duez Numerical relativity confronts compact neutron star binaries: a review and status report, Class. Quantum Gravity, Volume 27 (2010) no. 11, p. 114002 | arXiv | DOI

[19] N. Andersson TOPICAL REVIEW: Gravitational waves from instabilities in relativistic stars, Class. Quantum Gravity, Volume 20 (2003), p. 105 | arXiv

[20] C.J. Horowitz, Multi-messenger observations of neutron rich matter, . | arXiv

[21] K. Kotake; K. Sato; K. Takahashi Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae, Rep. Progr. Phys., Volume 69 (2006), pp. 971-1143 | arXiv

[22] C.D. Ott TOPICAL REVIEW: The gravitational-wave signature of core-collapse supernovae, Class. Quantum Gravity, Volume 26 (2009) no. 6, p. 063001 | arXiv | DOI

[23] C.L. Fryer; K.C.B. New Gravitational waves from gravitational collapse, Living Rev. Relativ., Volume 14 (2011), p. 1

[24] S.L. Shapiro; S.A. Teukolsky Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, Wiley-Interscience, New York, 1983 (663 pp. Research supported by the National Science Foundation)

[25] L. Wang; D.A. Howell; P. Höflich; J.C. Wheeler Bipolar supernova explosions, Astrophys. J., Volume 550 (2001), pp. 1030-1035 | DOI

[26] L. Wang; J.C. Wheeler; P. Höflich; A. Khokhlov; D. Baade; D. Branch; P. Challis; A.V. Filippenko; C. Fransson; P. Garnavich; R.P. Kirshner; P. Lundqvist; R. McCray; N. Panagia; C.S.J. Pun; M.M. Phillips; G. Sonneborn; N.B. Suntzeff The axisymmetric ejecta of supernova 1987A, Astrophys. J., Volume 579 (2002), pp. 671-677 | DOI

[27] K. Maeda; K. Kawabata; P.A. Mazzali; M. Tanaka; S. Valenti; K. Nomoto; T. Hattori; J. Deng; E. Pian; S. Taubenberger; M. Iye; T. Matheson; A.V. Filippenko; K. Aoki; G. Kosugi; Y. Ohyama; T. Sasaki; T. Takata Asphericity in supernova explosions from late-time spectroscopy, Science, Volume 319 (2008), p. 1220 | arXiv | DOI

[28] K. Kjær; B. Leibundgut; C. Fransson; A. Jerkstrand; J. Spyromilio The 3-D structure of SN 1987Aʼs inner ejecta, Astron. Astrophys., Volume 517 (2010), p. A51 | arXiv | DOI

[29] D.C. Leonard; A.V. Filippenko; M. Ganeshalingam; F.J.D. Serduke; W. Li; B.J. Swift; A. Gal-Yam; R.J. Foley; D.B. Fox; S. Park; J.L. Hoffman; D.S. Wong A non-spherical core in the explosion of supernova SN 2004dj, Nature, Volume 440 (2006), pp. 505-507 | arXiv | DOI

[30] D.C. Leonard; A.V. Filippenko; M. Ganeshalingam; F.J.D. Serduke; W. Li; B.J. Swift; A. Gal-Yam; R.J. Foley; D.B. Fox; S. Park; J.L. Hoffman; D.S. Wong A non-spherical core in the explosion of supernova SN 2004dj, Nature, Volume 440 (2006), pp. 505-507 | arXiv | DOI

[31] A.M. Khokhlov; P.A. Höflich; E.S. Oran; J.C. Wheeler; L. Wang; A.Y. Chtchelkanova Jet-induced explosions of core collapse supernovae, Astrophys. J. Lett., Volume 524 (1999), p. L107-L110 | DOI

[32] J.C. Wheeler; I. Yi; P. Höflich; L. Wang Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts, Astrophys. J., Volume 537 (2000), pp. 810-823 | arXiv | DOI

[33] S.P. Mikheev; A.I. Smirnov Resonant amplification of neutrino oscillations in matter and solar-neutrino spectroscopy, Nuovo Cimento C, Volume 9 (1986), pp. 17-26 | DOI

[34] H. Duan; J.P. Kneller TOPICAL REVIEW: neutrino flavour transformation in supernovae, J. Phys., G, Nucl. Part. Phys., Volume 36 (2009) no. 11, p. 113201 | arXiv | DOI

[35] H.-T. Janka; K. Langanke; A. Marek; G. Martínez-Pinedo; B. Müller Theory of core-collapse supernovae, Phys. Rep., Volume 442 (2007), pp. 38-74 | arXiv | DOI

[36] A. Burrows; L. Dessart; C.D. Ott; E. Livne Multi-dimensional explorations in supernova theory, Phys. Rep., Volume 442 (2007), pp. 23-37 | arXiv | DOI

[37] E. Chassande-Mottin; M. Hendry; P.J. Sutton; S. Márka Multimessenger astronomy with the Einstein Telescope, Gen. Relativity Gravitation, Volume 43 (2011), pp. 437-464 | arXiv | DOI

[38] S. Márka; the LIGO Scientific Collaboration; the Virgo Collaboration Transient multimessenger astronomy with gravitational waves, Class. Quantum Gravity, Volume 28 (2011) no. 11, p. 114013 | DOI

[39] T. Pradier; Antares Collaboration The Antares neutrino telescope and multi-messenger astronomy, Class. Quantum Gravity, Volume 27 (2010) no. 19, p. 194004 | arXiv | DOI

[40] Y. Aso; Z. Márka; C. Finley; J. Dwyer; K. Kotake; S. Márka Search method for coincident events from LIGO and IceCube detectors, Class. Quantum Gravity, Volume 25 (2008) no. 11, p. 114039 | arXiv | DOI

[41] S. Ando, B. Baret, B. Bouhou, E. Chassande-Mottin, A. Kouchner, L. Moscoso, V. Van Elewyck, I. Bartos, S. Márka, Z. Márka, A. Corsi, I. Di Palma, M.A. Papa, A. Dietz, C. Donzaud, D. Eichler, C. Finley, D. Guetta, F. Halzen, G. Jones, P.J. Sutton, S. Kandhasamy, V. Mandic, E. Thrane, K. Kotake, T. Piran, T. Pradier, G.E. Romero, E. Waxman, Multimessenger astronomy with gravitational waves and high-energy neutrinos, . | arXiv

[42] S.A. Colgate; R.H. White The hydrodynamic behavior of supernovae explosions, Astrophys. J., Volume 143 (1966), p. 626 | DOI

[43] J.R. Wilson, Supernovae and post-collapse behavior, in: Numerical Astrophysics, 1985, 422 pp.

[44] H.A. Bethe; J.R. Wilson Revival of a stalled supernova shock by neutrino heating, Astrophys. J., Volume 295 (1985), pp. 14-23 | DOI

[45] H.A. Bethe Supernova mechanisms, Rev. Modern Phys., Volume 62 (1990), pp. 801-866 | DOI

[46] J. Nordhaus; A. Burrows; A. Almgren; J. Bell Dimension as a key to the neutrino mechanism of core-collapse supernova explosions, Astrophys. J., Volume 720 (2010), pp. 694-703 | arXiv | DOI

[47] M. Rampp; H.-T. Janka Spherically symmetric simulation with Boltzmann neutrino transport of core collapse and postbounce evolution of a 15 Msun star, Astrophys. J. Lett., Volume 539 (2000), p. L33-L36

[48] M. Liebendörfer; A. Mezzacappa; F. Thielemann Conservative general relativistic radiation hydrodynamics in spherical symmetry and comoving coordinates, Phys. Rev. D, Volume 63 (2001) no. 10, p. 104003

[49] T.A. Thompson; A. Burrows; P.A. Pinto Shock breakout in core-collapse supernovae and its neutrino signature, Astrophys. J., Volume 592 (2003), pp. 434-456

[50] K. Sumiyoshi; S. Yamada; H. Suzuki; H. Shen; S. Chiba; H. Toki Postbounce evolution of core-collapse supernovae: long-term effects of the equation of state, Astrophys. J., Volume 629 (2005), pp. 922-932 | arXiv | DOI

[51] E.J. Lentz; A. Mezzacappa; O.E. Bronson Messer; M. Liebendörfer; W.R. Hix; S.W. Bruenn On the requirements for realistic modeling of neutrino transport in simulations of core-collapse supernovae, Astrophys. J., Volume 747 (2012), p. 73 | arXiv | DOI

[52] F.S. Kitaura; H.-T. Janka; W. Hillebrandt Explosions of O–Ne–Mg cores, the Crab supernova, and subluminous type II-P supernovae, Astron. Astrophys., Volume 450 (2006), pp. 345-350 | arXiv | DOI

[53] M. Tanaka; K.S. Kawabata; T. Hattori; P.A. Mazzali; K. Aoki; M. Iye; K. Maeda; K. Nomoto; E. Pian; T. Sasaki; M. Yamanaka Three-dimensional explosion geometry of stripped-envelope core-collapse supernovae. I. Spectropolarimetric observations, Astrophys. J., Volume 754 (2012), p. 63 | arXiv | DOI

[54] M. Herant; W. Benz; W.R. Hix; C.L. Fryer; S.A. Colgate Inside the supernova: A powerful convective engine, Astrophys. J., Volume 435 (1994), pp. 339-361 | arXiv | DOI

[55] A. Burrows; J. Hayes; B.A. Fryxell On the nature of core-collapse supernova explosions, Astrophys. J., Volume 450 (1995), p. 830 | arXiv | DOI

[56] H. Janka; E. Müller Neutrino heating, convection, and the mechanism of Type-II supernova explosions, Astron. Astrophys., Volume 306 (1996), p. 167

[57] C.L. Fryer; D.E. Holz; S.A. Hughes Gravitational wave emission from core collapse of massive stars, Astrophys. J., Volume 565 (2002), pp. 430-446

[58] C.L. Fryer Neutron star kicks from asymmetric collapse, Astrophys. J. Lett., Volume 601 (2004), p. L175-L178

[59] J.M. Blondin; A. Mezzacappa; C. DeMarino Stability of standing accretion shocks, with an eye toward core-collapse supernovae, Astrophys. J., Volume 584 (2003), pp. 971-980 | arXiv | DOI

[60] L. Scheck; T. Plewa; H.-T. Janka; K. Kifonidis; E. Müller Pulsar recoil by large-scale anisotropies in supernova explosions, Phys. Rev. Lett., Volume 92 (2004) no. 1, p. 011103 | arXiv

[61] L. Scheck; K. Kifonidis; H. Janka; E. Müller Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions, Astron. Astrophys., Volume 457 (2006), pp. 963-986 | arXiv | DOI

[62] N. Ohnishi; K. Kotake; S. Yamada Numerical analysis of standing accretion shock instability with neutrino heating in supernova cores, Astrophys. J., Volume 641 (2006), pp. 1018-1028 | arXiv | DOI

[63] N. Ohnishi; K. Kotake; S. Yamada Inelastic neutrino–helium scatterings and standing accretion shock instability in core-collapse supernovae, Astrophys. J., Volume 667 (2007), pp. 375-381 | arXiv | DOI

[64] T. Foglizzo; L. Scheck; H.-T. Janka Neutrino-driven convection versus advection in core-collapse supernovae, Astrophys. J., Volume 652 (2006), pp. 1436-1450 | arXiv | DOI

[65] J.W. Murphy; A. Burrows Criteria for Core-Collapse Supernova explosions by the neutrino mechanism, Astrophys. J., Volume 688 (2008), pp. 1159-1175 | arXiv | DOI

[66] R. Fernández; C. Thompson Stability of a spherical accretion shock with nuclear dissociation, Astrophys. J., Volume 697 (2009), pp. 1827-1841 | arXiv | DOI

[67] R. Fernández; C. Thompson Dynamics of a spherical accretion shock with neutrino heating and alpha-particle recombination, Astrophys. J., Volume 703 (2009), pp. 1464-1485 | arXiv | DOI

[68] W. Iwakami; K. Kotake; N. Ohnishi; S. Yamada; K. Sawada Three-dimensional simulations of standing accretion shock instability in core-collapse supernovae, Astrophys. J., Volume 678 (2008), pp. 1207-1222 | arXiv | DOI

[69] W. Iwakami; K. Kotake; N. Ohnishi; S. Yamada; K. Sawada Effects of rotation on standing accretion shock instability in nonlinear phase for Core-Collapse Supernovae, Astrophys. J., Volume 700 (2009), pp. 232-242 | arXiv | DOI

[70] R. Fernández The spiral modes of the standing accretion shock instability, Astrophys. J., Volume 725 (2010), pp. 1563-1580 | arXiv | DOI

[71] K. Kotake, K. Sumiyoshi, S. Yamada, T. Takiwaki, T. Kuroda, Y. Suwa, H. Nagakura, Core-collapse supernovae as supercomputing science: a status report toward 6D simulations with exact Boltzmann neutrino transport in full general relativity, . | arXiv

[72] H.-T. Janka Conditions for shock revival by neutrino heating in core-collapse supernovae, Astron. Astrophys., Volume 368 (2001), pp. 527-560 | arXiv | DOI

[73] A. Wongwathanarat; N.J. Hammer; E. Müller An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows, Astron. Astrophys., Volume 514 (2010), p. A48 | arXiv | DOI

[74] F. Hanke; A. Marek; B. Müller; H.-T. Janka Is strong SASI activity the key to successful neutrino-driven supernova explosions?, Astrophys. J., Volume 755 (2012), p. 138 | arXiv | DOI

[75] K. Nomoto; M. Hashimoto Presupernova evolution of massive stars, Phys. Rep., Volume 163 (1988), pp. 13-36 | DOI

[76] S.E. Woosley; A. Heger; T.A. Weaver The evolution and explosion of massive stars, Rev. Modern Phys., Volume 74 (2002), pp. 1015-1071 | DOI

[77] S.E. Woosley; T.A. Weaver The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis, Astrophys. J. Suppl., Volume 101 (1995), p. 181 | DOI

[78] H.-T. Janka; B. Müller; F.S. Kitaura; R. Buras Dynamics of shock propagation and nucleosynthesis conditions in O–Ne–Mg core supernovae, Astron. Astrophys., Volume 485 (2008), pp. 199-208 | arXiv | DOI

[79] A. Burrows; E. Livne; L. Dessart; C.D. Ott; J. Murphy A new mechanism for core-collapse supernova explosions, Astrophys. J., Volume 640 (2006), pp. 878-890 | arXiv | DOI

[80] I. Sagert; T. Fischer; M. Hempel; G. Pagliara; J. Schaffner-Bielich; A. Mezzacappa; F. Thielemann; M. Liebendörfer Signals of the QCD phase transition in core-collapse supernovae, Phys. Rev. Lett., Volume 102 (2009) no. 8, p. 081101 | arXiv | DOI

[81] R. Buras; H.-T. Janka; M. Rampp; K. Kifonidis Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. II. Models for different progenitor stars, Astron. Astrophys., Volume 457 (2006), pp. 281-308 | arXiv | DOI

[82] B. Müller; H.-T. Janka; A. Marek A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. II. Relativistic explosion models of core-collapse supernovae, Astrophys. J., Volume 756 (2012), p. 84 | arXiv | DOI

[83] A. Burrows; E. Livne; L. Dessart; C.D. Ott; J. Murphy Features of the acoustic mechanism of core-collapse supernova explosions, Astrophys. J., Volume 655 (2007), pp. 416-433 | arXiv | DOI

[84] T. Takiwaki; K. Kotake; Y. Suwa Three-dimensional hydrodynamic core-collapse supernova simulations for an 11.2 M star with spectral neutrino transport, Astrophys. J., Volume 749 (2012), p. 98 | arXiv | DOI

[85] S.W. Bruenn, A. Mezzacappa, W.R. Hix, J.M. Blondin, P. Marronetti, O.E.B. Messer, C.J. Dirk, S. Yoshida, 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code, . | arXiv

[86] Y. Suwa; K. Kotake; T. Takiwaki; S.C. Whitehouse; M. Liebendörfer; K. Sato Explosion geometry of a rotating 13 Msun star driven by the SASI-aided neutrino-heating supernova mechanism, Publ. Astron. Soc. Jpn., Volume 62 (2010), p. L49 | arXiv

[87] A. Marek; H.-T. Janka Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability, Astrophys. J., Volume 694 (2009), pp. 664-696 | arXiv | DOI

[88] B. Müller, H.-T. Janka, A. Heger, New two-dimensional models of supernova explosions by the neutrino-heating mechanism: evidence for different instability regimes in collapsing stellar cores, . | arXiv

[89] C.Y. Cardall Supernova neutrino challenges, Nucl. Phys., B Proc. Suppl., Volume 145 (2005), pp. 295-300 | arXiv | DOI

[90] A. Heger; S.E. Woosley; H.C. Spruit Presupernova evolution of differentially rotating massive stars including magnetic fields, Astrophys. J., Volume 626 (2005), pp. 350-363 | arXiv | DOI

[91] R. Buras; M. Rampp; H.-T. Janka; K. Kifonidis Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 Mȯ star, Astron. Astrophys., Volume 447 (2006), pp. 1049-1092 | arXiv | DOI

[92] H. Dimmelmeier; J.A. Font; E. Müller Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests, Astron. Astrophys., Volume 388 (2002), pp. 917-935 | arXiv | DOI

[93] I. Cordero-Carrión; P. Cerdá-Durán; H. Dimmelmeier; J.L. Jaramillo; J. Novak; E. Gourgoulhon Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue, Phys. Rev. D, Volume 79 (2009) no. 2, p. 024017 | arXiv | DOI

[94] C.D. Ott; A. Burrows; L. Dessart; E. Livne Two-dimensional multiangle, multigroup neutrino radiation-hydrodynamic simulations of postbounce supernova cores, Astrophys. J., Volume 685 (2008), pp. 1069-1088 | arXiv | DOI

[95] T.D. Brandt; A. Burrows; C.D. Ott; E. Livne Results from core-collapse simulations with multi-dimensional, multi-angle neutrino transport, Astrophys. J., Volume 728 (2011), p. 8 | arXiv | DOI

[96] S.W. Bruenn Stellar core collapse – Numerical model and infall epoch, Astrophys. J. Suppl., Volume 58 (1985), pp. 771-841 | DOI

[97] K.N. Yakunin; P. Marronetti; A. Mezzacappa; S.W. Bruenn; C. Lee; M.A. Chertkow; W.R. Hix; J.M. Blondin; E.J. Lentz; O.E. Bronson Messer; S. Yoshida Gravitational waves from core collapse supernovae, Class. Quantum Gravity, Volume 27 (2010) no. 19, p. 194005 | arXiv | DOI

[98] M. Liebendörfer; S.C. Whitehouse; T. Fischer The isotropic diffusion source approximation for supernova neutrino transport, Astrophys. J., Volume 698 (2009), pp. 1174-1190 | arXiv | DOI

[99] M. Liebendörfer; M. Rampp; H.-T. Janka; A. Mezzacappa Supernova simulations with Boltzmann neutrino transport: a comparison of methods, Astrophys. J., Volume 620 (2005), pp. 840-860 | arXiv | DOI

[100] S. Harikae; K. Kotake; T. Takiwaki; Y.-i. Sekiguchi A general relativistic ray-tracing method for estimating the energy and momentum deposition by neutrino pair annihilation in collapsars, Astrophys. J., Volume 720 (2010), pp. 614-625 | DOI

[101] B. Müller; H.-T. Janka; H. Dimmelmeier A new multi-dimensional general relativistic neutrino hydrodynamic code for core-collapse supernovae. I. Method and code tests in spherical symmetry, Astrophys. J. Suppl., Volume 189 (2010), pp. 104-133 | arXiv | DOI

[102] M. Shibata, K. Kiuchi, Y.-i. Sekiguchi, Y. Suwa, Truncated moment formalism for radiation hydrodynamics in numerical relativity, . | arXiv

[103] T. Kuroda; K. Kotake; T. Takiwaki Fully general relativistic simulations of core-collapse supernovae with an approximate neutrino transport, Astrophys. J., Volume 755 (2012), p. 11 | arXiv | DOI

[104] C.Y. Cardall, E. Endeve, A. Mezzacappa, Conservative 3+1 general relativistic variable Eddington tensor radiation transport equations, . | arXiv

[105] M. Hempel; J. Schaffner-Bielich A statistical model for a complete supernova equation of state, Nucl. Phys. A, Volume 837 (2010), pp. 210-254 | arXiv | DOI

[106] S. Furusawa; S. Yamada; K. Sumiyoshi; H. Suzuki A new baryonic equation of state at sub-nuclear densities for core-collapse simulations | arXiv

[107] G. Shen; C.J. Horowitz; E. OʼConnor Second relativistic mean field and virial equation of state for astrophysical simulations, Phys. Rev. C, Volume 83 (2011) no. 6, p. 065808 | arXiv | DOI

[108] E. Müller Gravitational radiation from collapsing rotating stellar cores, Astron. Astrophys., Volume 114 (1982), pp. 53-59

[109] R. Mönchmeyer; G. Schaefer; E. Mueller; R.E. Kates Gravitational waves from the collapse of rotating stellar cores, Astron. Astrophys., Volume 246 (1991), pp. 417-440

[110] S. Yamada; K. Sato Gravitational radiation from rotational collapse of a supernova core, Astrophys. J., Volume 450 (1995), p. 245 | DOI

[111] T. Zwerger; E. Müller Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron. Astrophys., Volume 320 (1997), pp. 209-227

[112] K. Kotake; S. Yamada; K. Sato Gravitational radiation from axisymmetric rotational core collapse, Phys. Rev. D, Volume 68 (2003) no. 4, p. 044023

[113] K. Kotake; S. Yamada; K. Sato; K. Sumiyoshi; H. Ono; H. Suzuki Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state, Phys. Rev. D, Volume 69 (2004) no. 12, p. 124004

[114] M. Shibata; Y.-I. Sekiguchi Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity, Phys. Rev. D, Volume 69 (2004) no. 8, p. 084024 | arXiv | DOI

[115] C.D. Ott; A. Burrows; E. Livne; R. Walder Gravitational waves from axisymmetric, rotating stellar core collapse, Astrophys. J., Volume 600 (2004), pp. 834-864 | arXiv | DOI

[116] C.D. Ott; H. Dimmelmeier; A. Marek; H. Janka; I. Hawke; B. Zink; E. Schnetter 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state, Phys. Rev. Lett., Volume 98 (2007) no. 26, p. 261101 | arXiv | DOI

[117] C.D. Ott; H. Dimmelmeier; A. Marek; H. Janka; B. Zink; I. Hawke; E. Schnetter Rotating collapse of stellar iron cores in general relativity, Class. Quantum Gravity, Volume 24 (2007), p. 139 | arXiv | DOI

[118] H. Dimmelmeier; J.A. Font; E. Müller Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation, Astron. Astrophys., Volume 393 (2002), pp. 523-542

[119] H. Dimmelmeier; C.D. Ott; H.-T. Janka; A. Marek; E. Müller Generic gravitational-wave signals from the collapse of rotating stellar cores, Phys. Rev. Lett., Volume 98 (2007) no. 25, p. 251101 | arXiv | DOI

[120] H. Dimmelmeier; C.D. Ott; A. Marek; H. Janka Gravitational wave burst signal from core collapse of rotating stars, Phys. Rev. D, Volume 78 (2008) no. 6, p. 064056 | arXiv | DOI

[121] S. Scheidegger; T. Fischer; S.C. Whitehouse; M. Liebendörfer Gravitational waves from 3D MHD core collapse simulations, Astron. Astrophys., Volume 490 (2008), pp. 231-241 | arXiv | DOI

[122] S. Scheidegger; R. Käppeli; S.C. Whitehouse; T. Fischer; M. Liebendörfer The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse, Astron. Astrophys., Volume 514 (2010), p. A51 | DOI

[123] M. Liebendörfer A simple parameterization of the consequences of deleptonization for simulations of stellar core collapse, Astrophys. J., Volume 633 (2005), pp. 1042-1051 | arXiv | DOI

[124] S.E. Woosley; A. Heger The progenitor stars of gamma-ray bursts, Astrophys. J., Volume 637 (2006), pp. 914-921 | arXiv | DOI

[125] S.-C. Yoon; N. Langer Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts, Astron. Astrophys., Volume 443 (2005), pp. 643-648 | arXiv | DOI

[126] C.D. Ott; A. Burrows; T.A. Thompson; E. Livne; R. Walder The spin periods and rotational profiles of neutron stars at birth, Astrophys. J. Suppl., Volume 164 (2006), pp. 130-155 | arXiv | DOI

[127] E. Müler; H.-T. Janka Gravitational radiation from convective instabilities in Type II supernova explosions, Astron. Astrophys., Volume 317 (1997), pp. 140-163

[128] A. Burrows; J. Hayes Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion, Phys. Rev. Lett., Volume 76 (1996), pp. 352-355 | arXiv | DOI

[129] C.L. Fryer Neutron star kicks from asymmetric collapse, Astrophys. J. Lett., Volume 601 (2004), p. L175-L178 | arXiv | DOI

[130] E. Müller; M. Rampp; R. Buras; H.-T. Janka; D.H. Shoemaker Toward gravitational wave signals from realistic core-collapse supernova models, Astrophys. J., Volume 603 (2004), pp. 221-230 | arXiv | DOI

[131] M. Rampp; E. Müller; M. Ruffert Simulations of non-axisymmetric rotational core collapse, Astron. Astrophys., Volume 332 (1998), pp. 969-983 | arXiv

[132] C.D. Ott; H. Dimmelmeier; A. Marek; H.-T. Janka; I. Hawke; B. Zink; E. Schnetter 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state, Phys. Rev. Lett., Volume 98 (2007) no. 26, p. 261101 | arXiv | DOI

[133] C.D. Ott; A. Burrows; L. Dessart; E. Livne A new mechanism for gravitational-wave emission in core-collapse supernovae, Phys. Rev. Lett., Volume 96 (2006) no. 20, p. 201102 | arXiv | DOI

[134] N. Andersson; V. Ferrari; D.I. Jones; K.D. Kokkotas; B. Krishnan; J.S. Read; L. Rezzolla; B. Zink Gravitational waves from neutron stars: promises and challenges, Gen. Relativity Gravitation (2010), p. 156 | arXiv | DOI

[135] K. Kotake; N. Ohnishi; S. Yamada Gravitational radiation from standing accretion shock instability in core-collapse supernovae, Astrophys. J., Volume 655 (2007), pp. 406-415 | arXiv | DOI

[136] K. Kotake; W. Iwakami; N. Ohnishi; S. Yamada Ray-tracing analysis of anisotropic neutrino radiation for estimating gravitational waves in core-collapse supernovae, Astrophys. J., Volume 704 (2009), pp. 951-963 | arXiv | DOI

[137] K. Kotake; W. Iwakami; N. Ohnishi; S. Yamada Stochastic nature of gravitational waves from supernova explosions with standing accretion shock instability, Astrophys. J. Lett., Volume 697 (2009), p. L133-L136 | arXiv | DOI

[138] A. Marek; H.-T. Janka; E. Müller Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae, Astron. Astrophys., Volume 496 (2009), pp. 475-494 | arXiv | DOI

[139] J.W. Murphy, C.D. Ott, A. Burrows, A model for gravitational wave emission from neutrino-driven core-collapse supernovae, . | arXiv

[140] W.D. Arnett; C. Meakin Toward realistic progenitors of core-collapse supernovae, Astrophys. J., Volume 733 (2011), p. 78 | arXiv | DOI

[141] E. Müller; H.-T. Janka; A. Wongwathanarat Parametrized 3D models of neutrino-driven supernova explosions. Neutrino emission asymmetries and gravitational-wave signals, Astron. Astrophys., Volume 537 (2012), p. A63 | arXiv | DOI

[142] R. Epstein The generation of gravitational radiation by escaping supernova neutrinos, Astrophys. J., Volume 223 (1978), pp. 1037-1045 | DOI

[143] M.S. Turner, R.V. Wagoner, Gravitational radiation from slowly-rotating ‘supernovae’ – Preliminary results, in: L.L. Smarr (Ed.), Sources of Gravitational Radiation, 1979, pp. 383–407.

[144] M. Favata The gravitational-wave memory effect, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084036 | arXiv | DOI

[145] T. Hiramatsu; K. Kotake; H. Kudoh; A. Taruya Gravitational wave background from neutrino-driven gamma-ray bursts, Mon. Not. R. Astron. Soc., Volume 364 (2005), pp. 1063-1068 | arXiv | DOI

[146] Y. Suwa; K. Murase Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves and neutrinos, Phys. Rev. D, Volume 80 (2009) no. 12, p. 123008 | arXiv | DOI

[147] Y. Suwa; T. Takiwaki; K. Kotake; K. Sato Gravitational wave background from population III stars, Astrophys. J. Lett., Volume 665 (2007), p. L43-L46 | arXiv | DOI

[148] K. Kotake; S. Yamada; K. Sato Anisotropic neutrino radiation in rotational core collapse, Astrophys. J., Volume 595 (2003), pp. 304-316 | DOI

[149] H. Janka; R. Mönchmeyer Anisotropic neutrino emission from rotating protoneutron stars, Astron. Astrophys., Volume 209 (1989), p. L5-L8

[150] R. Walder; A. Burrows; C.D. Ott; E. Livne; I. Lichtenstadt; M. Jarrah Anisotropies in the neutrino fluxes and heating profiles in two-dimensional, time-dependent, multigroup radiation hydrodynamics simulations of rotating core-collapse supernovae, Astrophys. J., Volume 626 (2005), pp. 317-332 | arXiv | DOI

[151] L. Dessart; A. Burrows; E. Livne; C.D. Ott Magnetically driven explosions of rapidly rotating white dwarfs following accretion-induced collapse, Astrophys. J., Volume 669 (2007), pp. 585-599 | arXiv | DOI

[152] Y. Suwa, K. Kotake, T. Takiwaki, The Gravitational-wave signatures in a rotating vs. non-rotating 13 Msun star driven by the SASI-aided neutrino-heating supernova mechanism, in preparation.

[153] A. Wongwathanarat; N.J. Hammer; E. Müller An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows, Astron. Astrophys., Volume 514 (2010), p. A48 | arXiv | DOI

[154] C.L. Fryer; D.E. Holz; S.A. Hughes Gravitational waves from stellar collapse: correlations to explosion asymmetries, Astrophys. J., Volume 609 (2004), pp. 288-300 | arXiv | DOI

[155] K. Kotake; W. Iwakami-Nakano; N. Ohnishi Effects of rotation on stochasticity of gravitational waves in the nonlinear phase of core-collapse supernovae, Astrophys. J., Volume 736 (2011), p. 124 | arXiv | DOI

[156] A. Wongwathanarat, H. Janka, E. Mueller, Hydrodynamical neutron star kicks in three dimensions, . | arXiv

[157] K.S. Thorne, Gravitational waves, in: E.W. Kolb, R.D. Peccei (Eds.), Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, 1995, p. 160.

[158] S.E.A. Kawamura The Japanese space gravitational wave antenna DECIGO, Class. Quantum Gravity, Volume 23 (2006), p. 125 | DOI

[159] J.M. LeBlanc; J.R. Wilson A numerical example of the collapse of a rotating magnetized star, Astrophys. J., Volume 161 (1970), p. 541

[160] G.S. Bisnovatyi-Kogan; I.P. Popov; A.A. Samokhin The magnetohydrodynamic rotational model of supernova explosion, Astrophys. Space Sci., Volume 41 (1976), pp. 287-320 | DOI

[161] E. Müller; W. Hillebrandt A magnetohydrodynamical supernova model, Astron. Astrophys., Volume 80 (1979), pp. 147-154

[162] E.M.D. Symbalisty Magnetorotational iron core collapse, Astrophys. J., Volume 285 (1984), pp. 729-746 | DOI

[163] N.V. Ardeljan; G.S. Bisnovatyi-Kogan; S.G. Moiseenko Nonstationary magnetorotational processes in a rotating magnetized cloud, Astron. Astrophys., Volume 355 (2000), pp. 1181-1190 | arXiv

[164] S. Yamada; H. Sawai Numerical study on the rotational collapse of strongly magnetized cores of massive stars, Astrophys. J., Volume 608 (2004), pp. 907-924 | DOI

[165] K. Kotake; H. Sawai; S. Yamada; K. Sato Magnetorotational effects on anisotropic neutrino emission and convection in core-collapse supernovae, Astrophys. J., Volume 608 (2004), pp. 391-404 | DOI

[166] K. Kotake; S. Yamada; K. Sato North–south neutrino heating asymmetry in strongly magnetized and rotating stellar cores, Astrophys. J., Volume 618 (2005), pp. 474-484 | arXiv | DOI

[167] H. Sawai; K. Kotake; S. Yamada Core-collapse supernovae with nonuniform magnetic fields, Astrophys. J., Volume 631 (2005), pp. 446-455 | DOI

[168] M. Obergaulinger; M.A. Aloy; H. Dimmelmeier; E. Müller Axisymmetric simulations of magnetorotational core collapse: Approximate inclusion of general relativistic effects, Astron. Astrophys., Volume 457 (2006), pp. 209-222 | arXiv | DOI

[169] M. Obergaulinger; M.A. Aloy; E. Müller Axisymmetric simulations of magneto-rotational core collapse: Dynamics and gravitational wave signal, Astron. Astrophys., Volume 450 (2006), pp. 1107-1134 | arXiv | DOI

[170] A. Burrows; L. Dessart; E. Livne; C.D. Ott; J. Murphy Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation, Astrophys. J., Volume 664 (2007), pp. 416-434 | arXiv | DOI

[171] P. Cerdá-Durán, J.A. Font, H. Dimmelmeier, General relativistic simulations of magneto-rotational core collapse with microphysics, . | arXiv

[172] Y. Suwa; T. Takiwaki; K. Kotake; K. Sato Magnetorotational collapse of population III stars, Publ. Astron. Soc. Jpn., Volume 59 (2007), pp. 771-785

[173] T. Takiwaki; K. Kotake; S. Nagataki; K. Sato Magneto-driven shock waves in core-collapse supernovae, Astrophys. J., Volume 616 (2004), pp. 1086-1094 | arXiv | DOI

[174] T. Takiwaki; K. Kotake; K. Sato Special relativistic simulations of magnetically dominated jets in collapsing massive stars, Astrophys. J., Volume 691 (2009), pp. 1360-1379 | arXiv | DOI

[175] S. Scheidegger; R. Kaeppeli; S.C. Whitehouse; T. Fischer; M. Liebendoerfer The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse | arXiv

[176] M. Obergaulinger; H.-T. Janka Magnetic field amplification in collapsing, non-rotating stellar cores | arXiv

[177] R.C. Duncan; C. Thompson Formation of very strongly magnetized neutron stars – Implications for gamma-ray bursts, Astrophys. J. Lett., Volume 392 (1992), p. L9-L13 | DOI

[178] J.M. Lattimer; M. Prakash Neutron star observations: Prognosis for equation of state constraints, Phys. Rep., Volume 442 (2007), pp. 109-165 | arXiv | DOI

[179] D.L. Meier; R.I. Epstein; W.D. Arnett; D.N. Schramm Magnetohydrodynamic phenomena in collapsing stellar cores, Astrophys. J., Volume 204 (1976), pp. 869-878

[180] S.A. Balbus; J.F. Hawley Instability, turbulence, and enhanced transport in accretion disks, Rev. Modern Phys., Volume 70 (1998), pp. 1-53

[181] S. Akiyama; J.C. Wheeler; D.L. Meier; I. Lichtenstadt The magnetorotational instability in core-collapse supernova explosions, Astrophys. J., Volume 584 (2003), pp. 954-970 | arXiv | DOI

[182] M. Obergaulinger; P. Cerdá-Durán; E. Müller; M.A. Aloy Semi-global simulations of the magneto-rotational instability in core collapse supernovae, Astron. Astrophys., Volume 498 (2009), pp. 241-271 | arXiv | DOI

[183] Y. Masada, T. Takiwaki, K. Kotake, T. Sano, Local simulations of the magneto-rotational instability in core-collapse supernovae, . | arXiv

[184] S.E. Woosley; J.S. Bloom The supernova gamma-ray burst connection, Annu. Rev. Astron. Astrophys., Volume 44 (2006), pp. 507-556 | arXiv | DOI

[185] M. Shibata; Y.T. Liu; S.L. Shapiro; B.C. Stephens Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity, Phys. Rev. D, Volume 74 (2006) no. 10, p. 104026 | arXiv | DOI

[186] T. Takiwaki; K. Kotake Gravitational wave signatures of magnetohydrodynamically driven core-collapse supernova explosions, Astrophys. J., Volume 743 (2011), p. 30 | arXiv | DOI

[187] K.S. Thorne Multipole expansions of gravitational radiation, Rev. Modern Phys., Volume 52 (1980), pp. 299-340 | DOI

[188] H. Kudoh; A. Taruya; T. Hiramatsu; Y. Himemoto Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D, Volume 73 (2006) no. 6, p. 064006 | arXiv | DOI

[189] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, 1969.

[190] J.-L. Tassoul Theory of Rotating Stars, Princeton Series in Astrophysics, Princeton University Press, Princeton, 1978

[191] M. Rampp; E. Müller; M. Ruffert Simulations of non-axisymmetric rotational core collapse, Astron. Astrophys., Volume 332 (1998), pp. 969-983

[192] T. Zwerger; E. Müller Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron. Astrophys., Volume 320 (1997), pp. 209-227

[193] C.L. Fryer; M.S. Warren The collapse of rotating massive stars in three dimensions, Astrophys. J., Volume 601 (2004), pp. 391-404 | arXiv | DOI

[194] M. Shibata; Y.-I. Sekiguchi Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities, Phys. Rev. D, Volume 71 (2005) no. 2, p. 024014 | arXiv | DOI

[195] C.D. Ott; H. Dimmelmeier; A. Marek; H.-T. Janka; B. Zink; I. Hawke; E. Schnetter Rotating collapse of stellar iron cores in general relativity, Class. Quantum Gravity, Volume 24 (2007), p. 139 | arXiv | DOI

[196] D. Lai; S.L. Shapiro Gravitational radiation from rapidly rotating nascent neutron stars, Astrophys. J., Volume 442 (1995), pp. 259-272 | arXiv | DOI

[197] K.D. Kokkotas, Gravitational wave astronomy, . | arXiv

[198] C.D. Ott; S. Ou; J.E. Tohline; A. Burrows One-armed spiral instability in a low-T/|W| postbounce supernova core, Astrophys. J. Lett., Volume 625 (2005), p. L119-L122 | arXiv | DOI

[199] M. Shibata; S. Karino; Y. Eriguchi Dynamical instability of differentially rotating stars, Mon. Not. R. Astron. Soc., Volume 334 (2002), p. L27-L31 | arXiv | DOI

[200] M. Saijo; T.W. Baumgarte; S.L. Shapiro One-armed spiral instability in differentially rotating stars, Astrophys. J., Volume 595 (2003), pp. 352-364 | arXiv | DOI

[201] A.L. Watts; N. Andersson; D.I. Jones The nature of low T/|W| dynamical instabilities in differentially rotating stars, Astrophys. J. Lett., Volume 618 (2005), p. L37-L40 | arXiv | DOI

[202] S. Ou; J.E. Tohline Unexpected dynamical instabilities in differentially rotating neutron stars, Astrophys. J., Volume 651 (2006), pp. 1068-1078 | arXiv | DOI

[203] P. Cerdá-Durán; V. Quilis; J.A. Font AMR simulations of the low T/|W| bar-mode instability of neutron stars, Comput. Phys. Comm., Volume 177 (2007), pp. 288-297 | arXiv | DOI

[204] M. Saijo; S. Yoshida Low T/|W| dynamical instability in differentially rotating stars: diagnosis with canonical angular momentum, Mon. Not. R. Astron. Soc., Volume 368 (2006), pp. 1429-1442 | arXiv | DOI

[205] J.C.B. Papaloizou; J.E. Pringle The dynamical stability of differentially rotating discs. II, Mon. Not. R. Astron. Soc., Volume 213 (1985), pp. 799-820

[206] J.M. Centrella; K.C.B. New; L.L. Lowe; J.D. Brown Dynamical rotational instability at low T/W, Astrophys. J. Lett., Volume 550 (2001), p. L193-L196 | arXiv | DOI

[207] T. Lund; A. Marek; C. Lunardini; H.-T. Janka; G. Raffelt Fast time variations of supernova neutrino fluxes and their detectability, Phys. Rev. D, Volume 82 (2010) no. 6, p. 063007 | arXiv | DOI

[208] I. Leonor; L. Cadonati; E. Coccia; S. DʼAntonio; A. Di Credico; V. Fafone; R. Frey; W. Fulgione; E. Katsavounidis; C.D. Ott; G. Pagliaroli; K. Scholberg; E. Thrane; F. Vissani Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data | arXiv

[209] S. Nishimura; K. Kotake; M.-a. Hashimoto; S. Yamada; N. Nishimura; S. Fujimoto; K. Sato r-Process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae, Astrophys. J., Volume 642 (2006), pp. 410-419 | arXiv | DOI

[210] S.-i. Fujimoto; M.-a. Hashimoto; K. Kotake; S. Yamada Heavy-element nucleosynthesis in a collapsar, Astrophys. J., Volume 656 (2007), pp. 382-392 | arXiv | DOI

[211] M. Ono, M.-a. Hashimoto, S.-i. Fujimoto, K. Kotake, S. Yamada, Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars II. Heavy-element nucleosynthesis of s, r, p-processes, . | arXiv

[212] S. Wanajo; H.-T. Janka; S. Kubono Uncertainties in the νp-process: supernova dynamics versus nuclear physics, Astrophys. J., Volume 729 (2011), p. 46 | arXiv | DOI

[213] S. Wanajo; H.-T. Janka The r-process in the neutrino-driven wind from a black-hole torus, Astrophys. J., Volume 746 (2012), p. 180 | arXiv | DOI

[214] T. Fischer; I. Sagert; G. Pagliara; M. Hempel; J. Schaffner-Bielich; T. Rauscher; F.-K. Thielemann; R. Käppeli; G. Martínez-Pinedo; M. Liebendörfer Core-collapse supernova explosions triggered by a quark–hadron phase transition during the early post-bounce phase, Astrophys. J. Suppl., Volume 194 (2011), p. 39 | arXiv | DOI

[215] T.A. Thompson; E. Quataert; A. Burrows Viscosity and rotation in core-collapse supernovae, Astrophys. J., Volume 620 (2005), pp. 861-877 | arXiv | DOI

[216] T.K. Suzuki; K. Sumiyoshi; S. Yamada Alfvén wave-driven supernova explosion, Astrophys. J., Volume 678 (2008), pp. 1200-1206 | arXiv | DOI

[217] J. Guilet; J. Sato; T. Foglizzo The saturation of SASI by parasitic instabilities, Astrophys. J., Volume 713 (2010), pp. 1350-1362 | arXiv | DOI

[218] J.W. Murphy, C. Meakin, A global turbulence model for neutrino-driven convection in core-collapse supernovae, . | arXiv

[219] C.D. Ott; C. Reisswig; E. Schnetter; E. OʼConnor; U. Sperhake; F. Löffler; P. Diener; E. Abdikamalov; I. Hawke; A. Burrows Dynamics and gravitational wave signature of collapsar formation, Phys. Rev. Lett., Volume 106 (2011) no. 16, p. 161103 | arXiv | DOI

[220] K. Sumiyoshi; S. Yamada; H. Suzuki; S. Chiba Neutrino signals from the formation of a black hole: a probe of the equation of state of dense matter, Phys. Rev. Lett., Volume 97 (2006) no. 9, p. 091101 | arXiv | DOI

[221] K. Nakazato; K. Sumiyoshi; H. Suzuki; S. Yamada Exploring hadron physics in black hole formations: A new promising target of neutrino astronomy, Phys. Rev. D, Volume 81 (2010) no. 8, p. 083009 | arXiv | DOI

[222] K. Nakazato; K. Sumiyoshi; S. Yamada Impact of quarks and pions on dynamics and neutrino signal of black hole formation in non-rotating stellar core collapse, Astrophys. J., Volume 721 (2010), pp. 1284-1294 | arXiv | DOI

[223] K. Fukushima; T. Hatsuda The phase diagram of dense QCD, Rep. Progr. Phys., Volume 74 (2011) no. 1, p. 014001 | arXiv | DOI

[224] B. Paczynski Super-Eddington winds from neutron stars, Astrophys. J., Volume 363 (1990), pp. 218-226 | DOI

[225] P. Meszaros; M.J. Rees High-entropy fireballs and jets in gamma-ray burst sources, Mon. Not. R. Astron. Soc., Volume 257 (1992), p. 29P-31P

[226] T.A. Thompson; P. Chang; E. Quataert Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts, Astrophys. J., Volume 611 (2004), pp. 380-393 | arXiv | DOI

[227] D.A. Uzdensky; A.I. MacFadyen Magnetar-driven magnetic tower as a model for gamma-ray bursts and asymmetric supernovae, Astrophys. J., Volume 669 (2007), pp. 546-560 | arXiv | DOI

[228] S.E. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J., Volume 405 (1993), pp. 273-277 | DOI

[229] B. Paczynski Are gamma-ray bursts in star-forming regions?, Astrophys. J. Lett., Volume 494 (1998), p. L45 | arXiv | DOI

[230] A.I. MacFadyen; S.E. Woosley Collapsars: Gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J., Volume 524 (1999), pp. 262-289 | arXiv | DOI

[231] Z.G. Dai; T. Lu Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars, Astron. Astrophys., Volume 333 (1998), p. L87-L90 | arXiv

[232] N. Bucciantini; E. Quataert; J. Arons; B.D. Metzger; T.A. Thompson Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars, Mon. Not. R. Astron. Soc. (2007), p. L126 | arXiv | DOI

[233] B.D. Metzger; D. Giannios; T.A. Thompson; N. Bucciantini; E. Quataert The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc., Volume 413 (2011), pp. 2031-2056 | arXiv | DOI

[234] S. Harikae; T. Takiwaki; K. Kotake Long-term evolution of slowly rotating collapsar in special relativistic magnetohydrodynamics, Astrophys. J., Volume 704 (2009), pp. 354-371 | arXiv | DOI

[235] S. Harikae; K. Kotake; T. Takiwaki Neutrino pair annihilation in collapsars: A ray-tracing method in special relativity, Astrophys. J., Volume 713 (2010), pp. 304-317 | arXiv | DOI

[236] K. Kotake; T. Takiwaki; S. Harikae Gravitational wave signatures of hyperaccreting collapsar disks, Astrophys. J., Volume 755 (2012), p. 84 | arXiv | DOI

[237] K. Kotake; T. Takiwaki; Y. Suwa; W. Iwakami Nakano; S. Kawagoe; Y. Masada; S.-i. Fujimoto Multimessengers from core-collapse supernovae: Multidimensionality as a key to bridge theory and observation, Adv. Astron., Volume 2012 (2012), p. 428757 http://ads.nao.ac.jp/abs/2012AdAst2012E..39K (provided by the SAO/NASA Astrophysics Data System) | arXiv | DOI

[238] S.E. Woosley; A. Heger Nucleosynthesis and remnants in massive stars of solar metallicity, Phys. Rep., Volume 442 (2007), pp. 269-283 | arXiv | DOI

[239] F.-K. Thielemann; R. Hirschi; M. Liebendörfer; R. Diehl Massive stars and their supernovae (R. Diehl; D.H. Hartmann; N. Prantzos, eds.), Lecture Notes in Physics, vol. 812, Springer-Verlag, Berlin, 2011, pp. 153-232 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Numerical simulations of GRB engines

Jérôme Novak

C. R. Phys (2011)


Searching for gravitational waves with the LIGO and Virgo interferometers

Marie-Anne Bizouard; Maria Alessandra Papa

C. R. Phys (2013)


Open questions in GRB physics

Bing Zhang

C. R. Phys (2011)