Comptes Rendus
Searching for gravitational waves with the LIGO and Virgo interferometers
Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 352-365.

Ces dernières années, les détecteurs interférométriques dʼondes gravitationnelles LIGO, GEO et Virgo ont atteint leur sensibilité nominale et accumulé quelques années de données pour la recherche dʼondes gravitationnelles. Nous résumons dans cet article tous les résultats obtenus à ce jour, qui couvrent lʼensemble des sources potentielles dʼondes gravitationnelles. La nouvelle génération de détecteurs au sol est en cours de construction. Ce réseau étendu devrait offrir une opportunité unique pour observer et comprendre notre Univers à travers les ondes gravitationnelles.

The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO, and Virgo, have operated and taken data at their design sensitivities over the last few years. The data has been examined for the presence of gravitational wave signals. Presented here is a comprehensive review of the most significant results. The network of detectors is currently being upgraded and extended, providing a large likelihood for observations. These future prospects will also be discussed.

Publié le :
DOI : 10.1016/j.crhy.2013.03.001
Mots clés : Gravitational waves, Neutron stars, Black holes, Supernova core collapse, LIGO, Virgo
Marie-Anne Bizouard 1 ; Maria Alessandra Papa 2, 3

1 Laboratoire de lʼAccélérateur Linéaire, Université Paris-Sud, IN2P3/CNRS, F-91898 Orsay, France
2 Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Golm, Germany
3 University of Wisconsin–Milwaukee, WI 53201, USA
@article{CRPHYS_2013__14_4_352_0,
     author = {Marie-Anne Bizouard and Maria Alessandra Papa},
     title = {Searching for gravitational waves with the {LIGO} and {Virgo} interferometers},
     journal = {Comptes Rendus. Physique},
     pages = {352--365},
     publisher = {Elsevier},
     volume = {14},
     number = {4},
     year = {2013},
     doi = {10.1016/j.crhy.2013.03.001},
     language = {en},
}
TY  - JOUR
AU  - Marie-Anne Bizouard
AU  - Maria Alessandra Papa
TI  - Searching for gravitational waves with the LIGO and Virgo interferometers
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 352
EP  - 365
VL  - 14
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.03.001
LA  - en
ID  - CRPHYS_2013__14_4_352_0
ER  - 
%0 Journal Article
%A Marie-Anne Bizouard
%A Maria Alessandra Papa
%T Searching for gravitational waves with the LIGO and Virgo interferometers
%J Comptes Rendus. Physique
%D 2013
%P 352-365
%V 14
%N 4
%I Elsevier
%R 10.1016/j.crhy.2013.03.001
%G en
%F CRPHYS_2013__14_4_352_0
Marie-Anne Bizouard; Maria Alessandra Papa. Searching for gravitational waves with the LIGO and Virgo interferometers. Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 352-365. doi : 10.1016/j.crhy.2013.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.03.001/

[1] C. Misner; K. Thorne; J. Wheeler Gravitation, WH Freeman & Co, 1973

[2] C.M. Will The confrontation between general relativity and experiment http://www.livingreviews.org/lrr-2006-3 Living Rev. Relativ. 9 (3)

[3] N. Cornish; L. Sampson; N. Yunes; F. Pretorius Gravitational wave tests of general relativity with the parameterized post-einsteinian framework, Phys. Rev. D, Volume 84 (2011), p. 062003 | arXiv | DOI

[4] T. Li; W. Del Pozzo; S. Vitale; C. Van Den Broeck; M. Agathos et al. Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence, Phys. Rev. D, Volume 85 (2012), p. 082003 | arXiv | DOI

[5] B. Abbott et al. LIGO: the laser interferometer gravitational-wave observatory, Rep. Prog. Phys., Volume 72 (2009), p. 076901 | arXiv | DOI

[6] F. Acernese et al. Virgo status, Class. Quantum Gravity, Volume 25 (2008) no. 18, p. 184001 | DOI

[7] H. Grote et al. The GEO 600 status, Class. Quantum Gravity, Volume 27 (2010), p. 084003 | DOI

[8] G.M. Harry Advanced LIGO: the next generation of gravitational wave detectors, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084006 | DOI

[9] T. Accadia et al. Plans for the upgrade of the gravitational wave detector virgo: Advanced virgo (T. Damour; R. Jantzen; R. Ruffini, eds.), Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, World Scientific, Paris, 2012, p. 1738

[10] K. Kuroda Large-scale gravitational wave telescope (LCGT), Int. J. Mod. Phys. D, Volume 20 (2011), pp. 1755-1770 | DOI

[11] J. Abadie et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Class. Quantum Gravity, Volume 27 (2010), p. 173001

[12] G. Hobbs; A. Archibald; Z. Arzoumanian; D. Backer; M. Bailes et al. The international pulsar timing array project: Using pulsars as a gravitational wave detector, Class. Quantum Gravity, Volume 27 (2010), p. 084013 | arXiv | DOI

[13] B. Zhang Open questions in GRB physics, C. R. Phys., Volume 12 (2011), pp. 206-225 | arXiv | DOI

[14] P. Meszaros Gamma-ray bursts, Rep. Prog. Phys., Volume 69 (2006), pp. 2259-2322 | arXiv | DOI

[15] E. Nakar Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236 | arXiv

[16] R. Prix Gravitational waves from spinning neutron stars (W. Becker, ed.), Neutron Stars and Pulsars, Springer-Verlag, Berlin/Heidelberg, 2009, pp. 651-683 | DOI

[17] Y. Guersel; M. Tinto Near optimal solution to the inverse problem for gravitational wave bursts, Phys. Rev. D, Volume 40 (1989), pp. 3884-3938 | DOI

[18] B.F. Schutz Networks of gravitational wave detectors and three figures of merit, Class. Quantum Gravity, Volume 28 (2011), p. 125023 | arXiv | DOI

[19] J.M. Weisberg; D.J. Nice; J.H. Taylor Timing measurements of the relativistic binary pulsar PSR B1913+16, Astrophys. J., Volume 722 (2010), pp. 1030-1034 | arXiv | DOI

[20] P. Madau; M.J. Rees Massive black holes as Population III remnants, Astrophys. J., Volume 551 (2001), p. L27-L30 | arXiv | DOI

[21] S.F. Portegies Zwart; S.L. McMillan The runaway growth of intermediate-mass black holes in dense star clusters, Astrophys. J., Volume 576 (2002), pp. 899-907 | arXiv | DOI

[22] L. Blanchet Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 9 (2006), p. 3 http://www.livingreviews.org/lrr-2006-4 | arXiv

[23] J.M. Centrella; J.G. Baker; B.J. Kelly; J.R. van Meter The final merger of black-hole binaries, Annu. Rev. Nucl. Part. Sci., Volume 60 (2010), pp. 75-100 | arXiv | DOI

[24] M. Shibata; K. Taniguchi Coalescence of black hole–neutron star binaries, Living Rev. Relativ., Volume 14 (2011), p. 6 http://www.livingreviews.org/lrr-2011-6

[25] L. Baiotti; B. Giacomazzo; L. Rezzolla Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to black hole, Phys. Rev. D, Volume 78 (2008), p. 084033 | arXiv | DOI

[26] J. Aasi et al. Search for gravitational waves from binary black hole inspiral, merger and ringdown in LIGO–Virgo data from 2009–2010 | arXiv

[27] J. Abadie et al. Search for gravitational waves from intermediate mass binary black holes, Phys. Rev. D, Volume 85 (2012), p. 102044 | arXiv

[28] N. Christensen; R. Meyer Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis, Phys. Rev. D, Volume 58 (1998), p. 082001 | DOI

[29] J. Veitch; A. Vecchio Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network, Phys. Rev. D, Volume 81 (2010), p. 062003 | arXiv | DOI

[30] V. Raymond; M. van der Sluys; I. Mandel; V. Kalogera; C. Rover et al. The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte-Carlo analysis of gravitational-wave signals, Class. Quantum Gravity, Volume 27 (2010), p. 114009 | arXiv | DOI

[31] C.D. Ott The gravitational wave signature of core-collapse supernovae, Class. Quantum Gravity, Volume 26 (2009), p. 063001 | arXiv | DOI

[32] C.L. Fryer; K.C. New Gravitational waves from gravitational collapse, Living Rev. Relativ., Volume 14 (2011), p. 1 http://www.livingreviews.org/lrr-2011-1

[33] H. Dimmelmeier; J.A. Font; E. Muller Relativistic simulations of rotational core collapse. 2. Collapse dynamics and gravitational radiation, Astron. Astrophys., Volume 393 (2002), pp. 523-542 | arXiv | DOI

[34] S. Mereghetti The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars, Astron. Astrophys. Rev., Volume 15 (2008), pp. 225-287 | arXiv | DOI

[35] N. Chamel; P. Haensel Physics of neutron star crusts, Living Rev. Relativ., Volume 11 (2008), p. 10 http://www.livingreviews.org/lrr-2008-10

[36] A. Vilenkin; E.P.S. Shellard Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge, 1994

[37] T. Damour; A. Vilenkin Gravitational wave bursts from cusps and kinks on cosmic strings, Phys. Rev. D, Volume 64 (2001), p. 064008 | arXiv | DOI

[38] C.L. Fryer; S.E. Woosley; D.H. Hartmann Formation rates of black hole accretion disk gamma-ray bursts, Astrophys. J., Volume 526 (1999), pp. 152-177 | arXiv | DOI

[39] B. Metzger; D. Giannios; T. Thompson; N. Bucciantini; E. Quataert The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc., Volume 413 (2011), pp. 2031-2056 | DOI

[40] E. Nakar Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236 | arXiv | DOI

[41] L. Rezzolla; B. Giacomazzo; L. Baiotti; J. Granot; C. Kouveliotou et al. The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts, Astrophys. J., Volume 732 (2011), p. L6 | arXiv

[42] E. Nakar; A. Gal-Yam; T. Piran; D.B. Fox The distances of short-hard GRBs and the SGR connection, Astrophys. J., Volume 640 (2006), pp. 849-853 | arXiv | DOI

[43] B. Baret; I. Bartos; B. Bouhou; E. Chassande-Mottin; A. Corsi et al. Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos, Phys. Rev. D, Volume 85 (2012), p. 103004 | arXiv | DOI

[44] S. Ando; B. Baret; B. Bouhou; E. Chassande-Mottin; A. Kouchner et al. Multimessenger astronomy with gravitational waves and high-energy neutrinos | arXiv

[45] I. Bartos; C. Finley; S. Marka Observational constraints on multi-messenger sources of gravitational waves and high-energy neutrinos, Phys. Rev. Lett., Volume 107 (2011), p. 251101 | arXiv

[46] C. Kochanek; J. Beacom; M. Kistler; J. Prieto; K. Stanek et al. A survey about nothing: Monitoring a million supergiants for failed supernovae, Astrophys. J., Volume 684 (2008), pp. 1336-1342 | arXiv | DOI

[47] F. Cavalier; M. Barsuglia; M.-A. Bizouard; V. Brisson; A.-C. Clapson et al. Reconstruction of source location in a network of gravitational wave interferometric detectors, Phys. Rev. D, Volume 74 (2006), p. 082004 | arXiv | DOI

[48] S. Fairhurst Triangulation of gravitational wave sources with a network of detectors, New J. Phys., Volume 11 (2009), p. 123006 | arXiv | DOI

[49] B. Abbott et al. Implementation and testing of the first prompt search for electromagnetic counterparts to gravitational wave transients, Astron. Astrophys., Volume 539 (2012), p. A124 | arXiv | DOI

[50] J. Abadie et al. First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts, Astron. Astrophys., Volume 541 (2012), p. A155 | arXiv | DOI

[51] J. Abadie et al. Search for gravitational waves from low mass compact binary coalescence in LIGOʼs sixth science run and Virgoʼs science runs 2 and 3, Phys. Rev. D, Volume 85 (2012), p. 082002 | arXiv

[52] A. Buonanno; Y. Pan; J.G. Baker; J. Centrella; B.J. Kelly et al. Toward faithful templates for non-spinning binary black holes using the effective-one-body approach, Phys. Rev. D, Volume 76 (2007), p. 104049 | arXiv | DOI

[53] Y. Pan; A. Buonanno; M. Boyle; L.T. Buchman; L.E. Kidder et al. Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism, Phys. Rev. D, Volume 84 (2011), p. 124052 | arXiv | DOI

[54] T. Bulik; K. Belczynski; A. Prestwich IC10 X-1/NGC300 X-1: the very immediate progenitors of BH–BH binaries, Astrophys. J., Volume 730 (2011), p. 140 | arXiv | DOI

[55] K. Belczynski; T. Bulik; M. Dominik; A. Prestwich The coalescence rates of double black holes | arXiv

[56] J. Abadie et al. All-sky search for gravitational-wave bursts in the second joint LIGO–Virgo run, Phys. Rev. D, Volume 85 (2012), p. 122007 | arXiv

[57] M. Briggs et al. Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3, Astrophys. J., Volume 760 (2012), p. 12 | arXiv | DOI

[58] J. Abadie et al. Search for gravitational-wave inspiral signals associated with short Gamma-Ray Bursts during LIGOʼs fifth and Virgoʼs first science run, Astrophys. J., Volume 715 (2010), pp. 1453-1461 | arXiv | DOI

[59] B. Abbott et al. Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO Science Run 5 and Virgo Science Run 1, Astrophys. J., Volume 715 (2010), pp. 1438-1452 | arXiv | DOI

[60] B. Abbott et al. Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs, Phys. Rev. D, Volume 77 (2008), p. 062004 | arXiv | DOI

[61] J. Abadie et al. Implications for the origin of GRB 051103 from LIGO observations, Astrophys. J., Volume 755 (2012), p. 2 | arXiv | DOI

[62] B. Abbott et al. Implications for the origin of GRB 070201 from LIGO observations, Astrophys. J., Volume 681 (2008), pp. 1419-1428 | arXiv | DOI

[63] A. Corsi; B.J. Owen Maximum gravitational-wave energy emissible in magnetar flares, Phys. Rev. D, Volume 83 (2011), p. 104014 | arXiv | DOI

[64] J. Abadie et al. Search for gravitational wave bursts from six magnetars, Astrophys. J., Volume 734 (2011), p. L35 | arXiv

[65] B. Abbott et al. Stacked search for gravitational waves from the 2006 SGR 1900+14 storm, Astrophys. J., Volume 701 (2009), p. L68-L74 | arXiv | DOI

[66] J. Abadie et al. A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar, Phys. Rev. D, Volume 83 (2011), p. 042001 | arXiv | DOI

[67] S. Adrian-Martinez et al. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007 | arXiv

[68] B. Abbott et al. First LIGO search for gravitational wave bursts from cosmic (super)strings, Phys. Rev. D, Volume 80 (2009), p. 062002 | arXiv | DOI

[69] B. Abbott et al. Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run, Phys. Rev. D, Volume 76 (2007), p. 082001 | arXiv | DOI

[70] L. Bildsten Gravitational radiation and rotation of accreting neutron stars, Astrophys. J., Volume 501 (1998), p. L89 | arXiv | DOI

[71] G. Ushomirsky; C. Cutler; L. Bildsten Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc., Volume 319 (2000), p. 902 | arXiv | DOI

[72] C. Cutler Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D, Volume 66 (2002), p. 084025 | arXiv | DOI

[73] N. Andersson A new class of unstable modes of rotating relativistic stars, Astrophys. J., Volume 502 (1998), pp. 708-713 | arXiv | DOI

[74] J. Friedman; B.F. Schutz Secular instability of rotating Newtonian stars, Astrophys. J., Volume 222 (1978), p. 281 | DOI

[75] L. Wade; X. Siemens; D.L. Kaplan; B. Knispel; B. Allen Continuous gravitational waves from isolated galactic neutron stars in the advanced detector era, Phys. Rev. D, Volume 86 (2012), p. 124011 | arXiv | DOI

[76] N. Andersson; D.I. Jones; K.D. Kokkotas; N. Stergioulas R mode runaway and rapidly rotating neutron stars, Astrophys. J., Volume 534 (2000), p. L75 | arXiv | DOI

[77] A.L. Watts; B. Krishnan Detecting gravitational waves from accreting neutron stars, Adv. Space Res., Volume 43 (2009), pp. 1049-1054 | arXiv | DOI

[78] P. Jaranowski; A. Krolak; B.F. Schutz Data analysis of gravitational – wave signals from spinning neutron stars. 1. The signal and its detection, Phys. Rev. D, Volume 58 (1998), p. 063001 | arXiv | DOI

[79] B.J. Owen How to adapt broad-band gravitational-wave searches for r-modes, Phys. Rev. D, Volume 82 (2010), p. 104002 | arXiv | DOI

[80] C. Cutler; B.F. Schutz The generalized F-statistic: Multiple detectors and multiple GW pulsars, Phys. Rev. D, Volume 72 (2005), p. 063006 | arXiv | DOI

[81] R.J. Dupuis; G. Woan Bayesian estimation of pulsar parameters from gravitational wave data, Phys. Rev. D, Volume 72 (2005), p. 102002 | arXiv | DOI

[82] P. Astone; S. DʼAntonio; S. Frasca; C. Palomba A method for detection of known sources of continuous gravitational wave signals in non-stationary data, Class. Quantum Gravity, Volume 27 (2010), p. 194016 | DOI

[83] B. Abbott et al. Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO 600 and LIGO detectors, Phys. Rev. D, Volume 69 (2004), p. 082004 | arXiv | DOI

[84] B. Abbott et al. Limits on gravitational wave emission from selected pulsars using LIGO data, Phys. Rev. Lett., Volume 94 (2005), p. 181103 | arXiv | DOI

[85] B. Abbott et al. Upper limits on gravitational wave emission from 78 radio pulsars, Phys. Rev. D, Volume 76 (2007), p. 042001 | arXiv | DOI

[86] B. Abbott et al. Searches for gravitational waves from known pulsars with S5 LIGO data, Astrophys. J., Volume 713 (2010), pp. 671-685 | arXiv | DOI

[87] B. Abbott et al. Beating the spin-down limit on gravitational wave emission from the Crab pulsar, Astrophys. J., Volume 683 (2008), p. L45-L50 | arXiv | DOI

[88] J. Abadie et al. Beating the spin-down limit on gravitational wave emission from the Vela pulsar, Astrophys. J., Volume 737 (2011), p. 93 | arXiv | DOI

[89] K. Wette et al. Searching for gravitational waves from Cassiopeia A with LIGO, Class. Quantum Gravity, Volume 25 (2008), p. 235011 | arXiv | DOI

[90] J. Abadie et al. First search for gravitational waves from the youngest known neutron star, Astrophys. J., Volume 722 (2010), pp. 1504-1513 | arXiv | DOI

[91] J. Abadie et al. All-sky search for periodic gravitational waves in the full S5 LIGO data, Phys. Rev. D, Volume 85 (2012), p. 022001 | arXiv | DOI

[92] J. Aasi et al. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data, Phys. Rev. D, Volume 87 (2013), p. 042001 | arXiv

[93] L. Grishchuk Amplification of gravitational waves in an isotropic universe, Sov. Phys. JETP, Volume 40 (1975), pp. 409-415

[94] R. Apreda; M. Maggiore; A. Nicolis; A. Riotto Gravitational waves from electroweak phase transitions, Nucl. Phys. B, Volume 631 (2002), pp. 342-368 | arXiv | DOI

[95] R. Brustein; M. Gasperini; M. Giovannini; G. Veneziano Relic gravitational waves from string cosmology, Phys. Lett. B, Volume 361 (1995), pp. 45-51 | arXiv | DOI

[96] A. Buonanno; M. Maggiore; C. Ungarelli Spectrum of relic gravitational waves in string cosmology, Phys. Rev. D, Volume 55 (1997), pp. 3330-3336 | arXiv | DOI

[97] T. Kibble Topology of cosmic domains and strings, J. Phys. A, Volume 9 (1976), pp. 1387-1398 | DOI

[98] T. Damour; A. Vilenkin Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D, Volume 71 (2005), p. 063510 | arXiv | DOI

[99] X. Siemens; V. Mandic; J. Creighton Gravitational wave stochastic background from cosmic (super)strings, Phys. Rev. Lett., Volume 98 (2007), p. 111101 | arXiv | DOI

[100] B. Abbott et al. An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature, Volume 460 (2009), pp. 990-994 | DOI

[101] M. Maggiore Gravitational wave experiments and early universe cosmology, Phys. Rep., Volume 331 (2000), pp. 283-367 | arXiv | DOI

[102] T.L. Smith; E. Pierpaoli; M. Kamionkowski A new cosmic microwave background constraint to primordial gravitational waves, Phys. Rev. Lett., Volume 97 (2006), p. 021301 | arXiv | DOI

[103] J. Abadie et al. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000 Hz, Phys. Rev. D, Volume 85 (2012), p. 122001 | arXiv

[104] B. Abbott et al. First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds, Phys. Rev. D, Volume 76 (2007), p. 022001 | arXiv | DOI

[105] B. Abbott et al. Directional limits on persistent gravitational waves using LIGO S5 science data, Phys. Rev. Lett., Volume 107 (2011), p. 271102 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Gravitational waves and astrophysical sources

B.S. Sathyaprakash

C. R. Phys (2013)


Numerical simulations of GRB engines

Jérôme Novak

C. R. Phys (2011)


The Chinese–French SVOM mission for gamma-ray burst studies

Jacques Paul; Jianyan Wei; Stéphane Basa; ...

C. R. Phys (2011)