Comptes Rendus
Living fluids/Fluides vivants
Blood flow and arterial endothelial dysfunction: Mechanisms and implications
[Écoulement sanguin et dysfonctionnement de lʼendothélium artériel : mécanismes et implications]
Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 479-496.

Lʼendothélium artériel régule finement la fonction vasculaire, et le dysfonctionnement de lʼendothélium joue un rôle essentiel dans le développement de lʼathérosclérose. Les lésions dʼathérosclérose se développent préférentiellement au niveau des branches et des bifurcations artérielles, là où le flux sanguin est perturbé. Comprendre la base de cette observation nécessite dʼélucider les effets de lʼécoulement sanguin sur la fonction des cellules endothéliales (CE). Le but de cette revue est : (1) de décrire notre compréhension actuelle de la relation entre lʼécoulement sanguin artériel et lʼathérosclérose, (2) de présenter le large éventail des réponses biologiques des CE induites par lʼécoulement, et (3) de discuter les mécanismes par lesquels les CE sentent, transmettent, et traduisent les forces mécaniques générées par lʼécoulement. Nous conclurons en présentant quelques perspectives dans le domaine hautement interdisciplinaire de la mécanotransduction des CE.

The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.

Publié le :
DOI : 10.1016/j.crhy.2013.05.003
Keywords: Endothelial cells, Atherosclerosis, Mechanotransduction, Cytoskeleton, Blood flow, Mechanosensors
Mot clés : Cellules endothéliales, Athérosclérose, Mécanotransduction, Cytosquelettte, Écoulement sanguin, Mécanosenseurs
Abdul I. Barakat 1

1 Hydrodynamics Laboratory (LadHyX), CNRS UMR 7646, École polytechnique, route de Saclay, 91128 Palaiseau cedex, France
@article{CRPHYS_2013__14_6_479_0,
     author = {Abdul I. Barakat},
     title = {Blood flow and arterial endothelial dysfunction: {Mechanisms} and implications},
     journal = {Comptes Rendus. Physique},
     pages = {479--496},
     publisher = {Elsevier},
     volume = {14},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crhy.2013.05.003},
     language = {en},
}
TY  - JOUR
AU  - Abdul I. Barakat
TI  - Blood flow and arterial endothelial dysfunction: Mechanisms and implications
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 479
EP  - 496
VL  - 14
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.05.003
LA  - en
ID  - CRPHYS_2013__14_6_479_0
ER  - 
%0 Journal Article
%A Abdul I. Barakat
%T Blood flow and arterial endothelial dysfunction: Mechanisms and implications
%J Comptes Rendus. Physique
%D 2013
%P 479-496
%V 14
%N 6
%I Elsevier
%R 10.1016/j.crhy.2013.05.003
%G en
%F CRPHYS_2013__14_6_479_0
Abdul I. Barakat. Blood flow and arterial endothelial dysfunction: Mechanisms and implications. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 479-496. doi : 10.1016/j.crhy.2013.05.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.05.003/

[1] S.J. Liliensiek; J.A. Wood; J. Yong; R. Auerbach; P.F. Nealey; C.J. Murphy Modulation of human vascular endothelial cell behaviors by nanotopographic cues, Biomaterials, Volume 31 (2010), pp. 5418-5426

[2] D.E. Discher; P. Janmey; Y.-L. Wang Tissue cells feel and respond to the stiffness of their substrate, Science, Volume 310 (2005), pp. 1139-1143

[3] P.F. Davies Flow-mediated endothelial mechanotransduction, Physiol. Rev., Volume 75 (1995), pp. 519-560

[4] A.B. Fisher; S. Chien; A.I. Barakat; R.M. Nerem Endothelial cellular response to altered shear stress, Am. J. Physiol., Volume 281 (2001), p. L529-L533

[5] S. Chien Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell (review), Am. J. Physiol., Volume 292 (2007), p. H1209-H1224

[6] C. Hahn; M.A. Schwartz Mechanotransduction in vascular physiology and atherogenesis, Nat. Rev. Mol. Cell Biol., Volume 10 (2009), pp. 53-62

[7] S. Na; O. Collin; F. Chowdhury; B. Tay; M. Ouyang; Y. Wang; N. Wang Rapid signal transduction in living cells is a unique feature of mechanotransduction, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 6626-6631

[8] N. Wang; J.P. Butler; D.E. Ingber Mechanotransduction across the cell surface and through the cytoskeleton, Science, Volume 260 (1993), pp. 1124-1127

[9] A.J. Maniotis; C.S. Chen; D.E. Ingber Demonstrations of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 849-854

[10] Y.R. Silberberg; A.E. Pelling; G.E. Yakubov; W.R. Crum; D.J. Hawkes; M.A. Horton Mitochondrial displacements in response to nanomechanical forces, J. Mol. Recognit., Volume 21 (2008), pp. 30-36

[11] N. Wang; J.D. Tytell; D.E. Ingber Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol., Volume 10 (2009), pp. 75-82

[12] G. Helmlinger; R.V. Geiger; S. Schreck; R.M. Nerem Effects of pulsatile flow on cultured vascular endothelial cell morphology, J. Biomech. Eng., Volume 113 (1991), pp. 123-131

[13] G. Helmlinger; B.C. Berk; R.M. Nerem Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ, Am. J. Physiol., Volume 269 (1995), p. C367-C375

[14] D.C. Chappell; S.E. Varner; R.M. Nerem; R.M. Medford; R.W. Alexander Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium, Circ. Res., Volume 82 (1998), pp. 532-539

[15] R.M. Lum; L.M. Wiley; A.I. Barakat Influence of different forms of shear stress on vascular endothelial TGF-1 mRNA expression, Int. J. Mol. Med., Volume 5 (2000), pp. 635-641

[16] D.K. Lieu; P.A. Pappone; A.I. Barakat Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells, Am. J. Physiol., Volume 286 (2004), p. C1367-C1375

[17] M. Gautam; Y. Shen; T.L. Thirkill; G.C. Douglas; A.I. Barakat Flow-activated chloride channels in vascular endothelium: shear stress sensitivity, desensitization dynamics, and physiological implications, J. Biol. Chem., Volume 281 (2006), pp. 36492-36500

[18] A.I. Barakat; E.V. Leaver; P.A. Pappone; P.F. Davies A flow-activated chloride-selective membrane current in vascular endothelial cells, Circ. Res., Volume 85 (1999), pp. 820-828

[19] K.A. Barbee; P.F. Davies; R. Lal Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy, Circ. Res., Volume 74 (1994), pp. 163-171

[20] V.S. Lebleu; B. MacDonald; R. Kalluri Structure and function of basement membranes, Exp. Biol. Med., Volume 232 (2007), pp. 1121-1129

[21] S.J. Liliensiek; P. Nealey; C.J. Murphy Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering, Tissue Eng. Part A, Volume 15 (2009), pp. 2643-2651

[22] M. Vicente-Manzanares; X. Ma; R.S. Adelstein; A.R. Horwitz Non-muscle myosin II takes centre stage in cell adhesion and migration, Nat. Rev. Mol. Cell Biol., Volume 10 (2009), pp. 778-790

[23] M. Sato; M.J. Levesque; R.M. Nerem Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress, Arterioscler. Thromb. Vasc. Biol., Volume 7 (1987), pp. 276-286

[24] M. Sato; N. Ohshima; R.M. Nerem Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress, J. Biomech., Volume 29 (1996), pp. 461-467

[25] F. Guilak; J.R. Tedrow; R. Burgkart Viscoelastic properties of the cell nucleus, Biochem. Biophys. Res. Commun., Volume 269 (2000), pp. 781-786

[26] O.C. Rodriguez; A.W. Schaefer; C.A. Mandato; P. Forscher; W.M. Bement; C.M. Waterman-Storer Conserved microtubule–actin interactions in cell movement and morphogenesis, Nat. Cell Biol., Volume 5 (2003), pp. 599-609

[27] Cytoskeletal Mechanics: Models and Measurements (R.D. Kamm; M.R.K. Mofrad, eds.), Cambridge University Press, 2006, p. 13

[28] S. Kumar; I.Z. Maxwell; A. Heisterkamp; T.R. Polte; T. Lele; M. Salanga; E. Mazur; D.E. Ingber Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization and extracellular matrix mechanics, Biophys. J., Volume 90 (2006), pp. 3762-3773

[29] S. Deguchi; T. Ohashi; M. Sato Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells, J. Biomech., Volume 39 (2006), pp. 2603-2610

[30] L. Lu; S.J. Oswald; H. Ngu; F.C.P. Yin Mechanical properties of actin stress fibers in living cells, Biophys. J., Volume 95 (2008), pp. 6060-6071

[31] K. Katoh; Y. Kano; M. Masuda; H. Onishi; K. Fujiwara Isolation and contraction of the stress fiber, Mol. Biol. Cell, Volume 9 (1998), pp. 1919-1938

[32] Z.-D. Shi; J.M. Tarbell Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts, Ann. Biomed. Eng., Volume 39 (2011), pp. 1608-1619

[33] D.M. Wang; J.M. Tarbell Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells, J. Biomech. Eng., Volume 117 (1995), pp. 358-363

[34] K.K. Wu; P. Thiagarajan Role of endothelium in thrombosis and hemostasis, Annu. Rev. Med., Volume 47 (1996), pp. 315-331

[35] R.G. Mason; D. Sharp; H.Y. Chuang; S.F. Mohammad The endothelium: roles in thrombosis and hemostasis, Arch. Pathol. Lab. Med., Volume 101 (1977), pp. 61-64

[36] G. Bazzoni; E. Dejana Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis, Physiol. Rev., Volume 84 (2004), pp. 869-901

[37] U. Pohl; J. Holtz; R. Busse; E. Bassenge Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension, Volume 8 (1986), pp. 37-44

[38] B.L. Langille; F. OʼDonnell Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science, Volume 231 (1986), pp. 405-407

[39] R.W.St. Clair Pathogenesis of the atherosclerotic lesion: current concepts of cellular and biochemical events (T. Tulenko; R. Cox, eds.), Recent Advances in Arterial Diseases: Atherosclerosis, Hypertension, and Vasopasm, Alan R. Liss, Inc., New York, 1986, pp. 1-29

[40] R. Ross; J.A. Glomset The pathogenesis of atherosclerosis, N. Engl. J. Med., Volume 295 (1976), pp. 369-377

[41] R. Ross; J.A. Glomset The pathogenesis of atherosclerosis, N. Engl. J. Med., Volume 295 (1976), pp. 420-425

[42] P. Libby Inflammation in atherosclerosis, Nature, Volume 420 (2002), pp. 868-874

[43] A. Tedgui; Z. Mallat Anti-inflammatory mechanisms in the vascular wall, Circ. Res., Volume 88 (2001), pp. 877-887

[44] C.J. Schwartz; J.R.A. Mitchell Observations on localization of arterial plaques, Circ. Res., Volume 11 (1962), pp. 63-73

[45] T. Azuma; T. Fukushima Flow patterns in stenotic blood vessel models, Biorheology, Volume 13 (1976), pp. 337-355

[46] L.W. Ehrlich; M.H. Friedman Particle paths and stasis in unsteady flow through a bifurcation, J. Biomech., Volume 10 (1977), pp. 561-568

[47] T. Karino; H. Kwong; H.L. Goldsmith Particle flow behavior in models of branching vessels. I. Vortices in 90° T-junctions, Biorheology, Volume 16 (1979), pp. 231-248

[48] F.J. Walburn; P.D. Stein Flow in a symmetrically branched tube simulating the aortic bifurcation: the effects of unevenly distributed flow, Ann. Biomed. Eng., Volume 8 (1980), pp. 159-173

[49] B.K. Bharadvaj; R.F. Mabon; D.P. Giddens Steady flow in a model of the human carotid bifurcation: Part I – Flow visualization, J. Biomech., Volume 15 (1982), pp. 349-362

[50] B.K. Bharadvaj; R.F. Mabon; D.P. Giddens Steady flow in a model of the human carotid bifurcation: Part II – Laser-Doppler measurements, J. Biomech., Volume 15 (1982), pp. 363-378

[51] M.H. Friedman; C.B. Bargeron; G.M. Hutchins; F.F. Mark; O.J. Deters Hemodynamic measurements in human arterial casts, and their correlation with histology and luminal area, J. Biomech. Eng., Volume 102 (1980), pp. 247-251

[52] T. Asakura; T. Karino Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, Circ. Res., Volume 66 (1990), pp. 1045-1066

[53] J.E. Moore; D.N. Ku; C.K. Zarins; S. Glagov Pulsatile flow visualization in the abdominal aorta under differing physiological conditions: implications for increased susceptibility to atherosclerosis, J. Biomech. Eng., Volume 114 (1992), pp. 391-397

[54] E.M. Pedersen; A.P. Yoganathan; X.P. Lefebvre Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation, J. Biomech., Volume 25 (1992), pp. 935-944

[55] S. Endo; Y. Sohara; T. Karino Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole, Heart Ves., Volume 11 (1996), pp. 180-191

[56] A.I. Barakat; T. Karino; C.K. Colton Microcinematographic studies of the flow field in the excised rabbit aorta, Biorheology, Volume 34 (1997), pp. 195-221

[57] S. Farthing; P. Peronneau Flow in the thoracic aorta, Cardiovasc. Res., Volume 13 (1979), pp. 607-620

[58] K.J. Hutchison; E. Karpinski; J.D. Campbell; A.P. Potemkowski Aortic velocity contours at abdominal branches in anesthetized dogs, J. Biomech., Volume 21 (1988), pp. 277-286

[59] D.R. Bell; H.N. Sabbah; P.D. Stein Profiles of velocity in coronary arteries of dogs indicate lower shear rate along inner arterial curvature, Arteriosclerosis, Volume 9 (1989), pp. 167-175

[60] R.S. Reneman; A.P.G. Hoeks Wall shear stress as measured in vivo: consequences for the design of the arterial system, Med. Biol. Eng. Comput., Volume 46 (2008), pp. 499-507

[61] K. Perktold; R.M. Nerem; R.O. Peter A numerical calculation of flow in a curved tube model of the left main coronary artery, J. Biomech., Volume 24 (1991), pp. 175-189

[62] K. Perktold; H. Florian; D. Hilbert; R. Peter Wall shear stress distribution in the human carotid siphon during pulsatile flow, J. Biomech., Volume 21 (1988), pp. 663-671

[63] M. Thiriet; C. Pares; E. Saltel; F. Hecht Numerical simulation of steady flow in a model of the aortic bifurcation, J. Biomech. Eng., Volume 114 (1992), pp. 40-49

[64] A.Y. Cheer; H.A. Dwyer; A.I. Barakat; E. Sy; M. Bice Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation, Biorheology, Volume 35 (1998), pp. 415-435

[65] N. Shahcheraghi; H.A. Dwyer; A.Y. Cheer; A.I. Barakat; T. Rutaganira Unsteady and three-dimensional simulation of blood flow in the human aortic arch, J. Biomech. Eng., Volume 124 (2002), pp. 378-387

[66] A. Kazakidi; A.M. Plata; S.J. Sherwin; P.D. Weinberg Effect of reverse flow on the pattern of wall shear stress near arterial branches, J. R. Soc. Interface, Volume 8 (2011), pp. 1594-1603

[67] P.E. Vincent; A.M. Plata; A.A. Hunt; P.D. Weinberg; S.J. Sherwin Blood flow in the rabbit aortic arch and descending thoracic aorta, J. R. Soc. Interface, Volume 8 (2011), pp. 1708-1719

[68] M.A. Van Doormaal; A. Kazakidi; M. Wylezinska; A. Hunt; J.L. Tremoleda; A. Protti; Y. Bohraus; W. Gsell; P.D. Weinberg; C.R. Ethier Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root, J. R. Soc. Interface, Volume 9 (2012), pp. 2834-2844

[69] J. Lantz; J. Renner; M. Karlsson Wall shear stress in a subject specific human aorta – influence of fluid–structure interaction, Int. J. Appl. Mech., Volume 4 (2011), pp. 759-778

[70] V.L. Rayz; S.A. Berger Computational modeling of vascular hemodynamics (S. De; F. Guilak; M.R.K. Mofrad, eds.), Computational Modeling in Biomechanics, Springer, 2010

[71] Y. Huo; G.S. Kassab Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree, J. Appl. Physiol., Volume 107 (2009), pp. 500-505

[72] H.F. Younis; M.R. Kaazempur-Mofrad; R.C. Chan; A.G. Isasi; D.P. Hinton; A.H. Chau; L.A. Kim; R.D. Kamm Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation, Biomech. Model. Mechanobiol., Volume 3 (2004), pp. 17-32

[73] C.G. Caro; T.J. Pedley; R.C. Schroter; W.A. Seed The Mechanics of the Circulation, Oxford University Press, 1978

[74] T.J. Pedley The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, 1980

[75] C.C. Hamakiotes; S.A. Berger Fully developed pulsatile flow in a curved pipe, J. Fluid Mech., Volume 195 (1988), pp. 23-55

[76] C.C. Hamakiotes; S.A. Berger Periodic flows through curved tubes: the effect of the frequency parameter, J. Fluid Mech., Volume 210 (1990), pp. 353-370

[77] K.B. Chandran Flow dynamics in the human aorta, J. Biomech. Eng., Volume 115 (1993), pp. 611-616

[78] D.N. Ku; D.P. Giddens; C.K. Zarins; S. Glagov Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, Volume 5 (1985), pp. 293-302

[79] D.N. Ku Blood flow in arteries, Annu. Rev. Fluid Mech., Volume 29 (1997), pp. 399-434

[80] H.W. Choi; A.I. Barakat Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step, Biorheology, Volume 42 (2005), pp. 493-509

[81] S. Chien Shear dependence of effective cell volume as a determinant of blood viscosity, Science, Volume 168 (1970), pp. 977-978

[82] L. Dempere-Marco; E. Oubel; M. Castro; C. Putman; A. Frangi; J. Cebral CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms (R. Larsen; M. Nielsen; J. Sporring, eds.), MICCAI 2006, Lect. Notes Comput. Sci., vol. 4191, Springer-Verlag, Berlin/Heidelberg, 2006, pp. 438-445

[83] F. Kabinejadian; D.N. Ghista Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution, Med. Eng. Phys., Volume 34 (2012), pp. 860-872

[84] D.L. Fry Acute vascular endothelial changes associated with increased blood velocity gradients, Circ. Res., Volume 22 (1968), pp. 165-197

[85] C.G. Caro; J.M. Fitz-Gerald; R.C. Schroter Arterial wall shear and distribution of early atheroma in man, Nature, Volume 223 (1969), pp. 1159-1161

[86] C.G. Caro; J.M. Fitz-Gerald; R.C. Schroter Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc. R. Soc. Lond. B, Volume 177 (1971), pp. 109-133

[87] V. Peiffer; E.M. Rowland; S.G. Cremers; P.D. Weinberg; S.J. Sherwin Effect of aortic taper on patterns of blood flow and wall shear stress in rabbits: association with age, Atherosclerosis, Volume 223 (2012), pp. 114-121

[88] S.E. Barnes; P.D. Weinberg Contrasting patterns of spontaneous aortic disease in young and old rabbits, Arterioscler. Thromb. Vasc. Biol., Volume 18 (1998), pp. 300-308

[89] N. DePaola; M.A. Gimbrone; P.F. Davies; C.F. Dewey Vascular endothelium responds to fluid shear stress gradients, Arterioscler. Thromb., Volume 12 (1992), pp. 1254-1257

[90] C.R. White; H.Y. Stevens; M.A. Haidekker; J.A. Frangos Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells, Am. J. Physiol., Volume 289 (2005), p. H2350-H2355

[91] Y. Shimogonya; T. Ishikawa; Y. Imai; N. Matsuki; T. Yamaguchi Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON), J. Biomech., Volume 42 (2009), pp. 550-554

[92] P.D. Weinberg; C.R. Ethier Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas, J. Biomech., Volume 40 (2007), pp. 1594-1598

[93] G. Garcia-Cardena; J. Comander; K.R. Anderson; B.R. Blackman; M.A. Gimbrone Biomechanical activation of vascular endothelium as a determinant of its functional phenotype, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 4478-4485

[94] J.Y. Shyy; S. Chien Role of integrins in cellular responses to mechanical stress and adhesion, Curr. Opin. Cell Biol., Volume 9 (1997), pp. 707-713

[95] S.P. Olesen; D.E. Clapham; P.F. Davies Hemodynamic shear-stress activates a K+ current in vascular endothelial-cells, Nature, Volume 331 (1988), pp. 168-170

[96] J.H. Hoger; V.I. Ilyin; S. Forsyth; A. Hoger Shear stress regulates the endothelial Kir2.1 ion channel, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), pp. 7780-7785

[97] Y. Wang; E.L. Botvinick; Y. Zhao; M.W. Berns; S. Usami; R.Y. Tsien; S. Chien Visualizing the mechanical activation of Src, Nature, Volume 434 (2005), pp. 1040-1045

[98] S.R. Gudi; C.B. Clark; J.A. Frangos Fluid flow rapidly activates G proteins in human endothelial cells: involvement of G proteins in mechanochemical signal transduction, Circ. Res., Volume 79 (1996), pp. 834-839

[99] M.A. Haidekker; N. LʼHeureux; J.A. Frangos Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence, Am. J. Physiol., Volume 278 (2000), p. H1401-H1406

[100] P.J. Butler; G. Norwich; S. Weinbaum; S. Chien Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity, Am. J. Physiol., Volume 280 (2001), p. C962-C969

[101] R.C. Ziegelstein; L. Cheng; M.C. Capogrossi Flow-dependent cytosolic acidification of vascular endothelial cells, Science, Volume 258 (1992), pp. 656-659

[102] R.C. Ziegelstein; P.S. Blank; L. Cheng; M.C. Capogrossi Cytosolic alkalinization of vascular endothelial cells produced by an abrupt reduction in fluid shear stress, Circ. Res., Volume 82 (1998), pp. 803-809

[103] P. Milner; K.A. Kirkpatrick; V. Ralevic; V. Toothill; J. Pearson; G. Burnstock Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow, Proc. Biol. Sci., Volume 241 (1990), pp. 245-248

[104] G.M. Buga; M.E. Gold; J.M. Fukuto; L.J. Ignarro Shear stress-induced release of nitric oxide from endothelial cells grown on beads, Hypertension, Volume 17 (1991), pp. 187-193

[105] R.M. Nerem; D.G. Harrison; W.R. Taylor; R.W. Alexander Hemodynamics and vascular endothelial biology, J. Cardiovasc. Pharmacol., Volume 21 (1993) no. Suppl. 1, p. S6-S10

[106] J. Shen; F.W. Luscinskas; A. Connolly; C.F. Dewey; M.A. Gimbrone Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells, Am. J. Physiol., Volume 262 (1992), p. C384-C390

[107] R.V. Geiger; B.C. Berk; R.W. Alexander; R.M. Nerem Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis, Am. J. Physiol., Volume 262 (1992), p. C1411-C1417

[108] H. Tseng; T.E. Peterson; B.C. Berk Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells, Circ. Res., Volume 77 (1995), pp. 869-878

[109] C. Yan; M. Takahashi; M. Okuda; J.D. Lee; B.C. Berk Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium, J. Biol. Chem., Volume 274 (1999), pp. 143-150

[110] Q. Lan; K.O. Mercurius; P.F. Davies Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress, Biochem. Biophys. Res. Commun., Volume 201 (1994), pp. 950-956

[111] A.M. Malek; S. Izumo Molecular aspects of signal transduction of shear stress in the endothelial cell, J. Hypertens., Volume 12 (1994), pp. 989-999

[112] C.F. Dewey; S.R. Bussolari; M.A. Gimbrone; P.F. Davies The dynamic response of vascular endothelial cells to fluid shear stress, J. Biomech. Eng., Volume 103 (1981), pp. 177-185

[113] R.M. Nerem; M.J. Levesque; J.F. Cornhill Vascular endothelial morphology as an indicator of the pattern of blood flow, J. Biomech. Eng., Volume 103 (1981), pp. 172-176

[114] S.G. Eskin; C.L. Ives; L.V. McIntire; L.T. Navarro Response of cultured endothelial cells to steady flow, Microvasc. Res., Volume 28 (1984), pp. 87-94

[115] A.I. Barakat; D.K. Lieu Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress, Cell Biochem. Biophys., Volume 38 (2003), pp. 323-343

[116] S. Chien Molecular basis of rheological modulation of endothelial functions: Importance of stress direction, Biorheology, Volume 43 (2006), pp. 95-116

[117] R. Sampath; G.L. Kukielka; C.W. Smith; S.G. Eskin; L.V. McIntire Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro, Ann. Biomed. Eng., Volume 23 (1995), pp. 247-256

[118] M. Ohno; J.P. Cooke; V.J. Dzau; G.H. Gibbons Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade, J. Clin. Invest., Volume 95 (1995), pp. 1363-1369

[119] Z. Jiang; S.A. Berceli; C.L. Pfahnl; L. Wu; D. Goldman; M. Tao; M. Kagayama; A. Matsukawa; C.K. Ozaki Wall shear modulation of cytokines in early vein grafts, J. Vasc. Surg., Volume 40 (2004), pp. 345-350

[120] A.I. Barakat; D.K. Lieu; A. Gojova Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals?, Biomaterials, Volume 27 (2006), pp. 671-678

[121] E. Tzima; M. Irani-Tehrani; W.B. Kiosses; E. Dejana; D.A. Schultz; B. Engelhardt; G. Cao; H. DeLisser; M.A. Schwartz A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, Volume 437 (2005), pp. 426-431

[122] S. Gudi; J.P. Nolan; J.A. Frangos Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 2515-2519

[123] S. Weinbaum; X. Zhang; Y. Han; H. Vink; S.C. Cowin Mechanotransduction and flow across the endothelial glycocalyx, Proc. Natl. Acad. Sci. USA, Volume 100 (2003), pp. 7988-7995

[124] J.M. Tarbell; M.Y. Pahakis Mechanotransduction and the glycocalyx, J. Intern. Med., Volume 259 (2006), pp. 339-350

[125] S. Weinbaum; J.M. Tarbell; E.R. Damiano The structure and function of the endothelial glycocalyx layer, Annu. Rev. Biomed. Eng., Volume 9 (2007), pp. 121-167

[126] M.Y. Pahakis; J.R. Kosky; R.O. Dull; J.M. Tarbell The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress, Biochem. Biophys. Res. Commun., Volume 355 (2007), pp. 228-233

[127] Y. Yao Three-dimensional flow-induced dynamics of the endothelial surface glycocalyx layer, MIT, 2007 (Ph.D. dissertation)

[128] N. Wang; Z. Suo Long-distance propagation of forces in a cell, Biochem. Biophys. Res. Commun., Volume 328 (2005), pp. 1133-1138

[129] S. Hu; J. Chen; B. Fabry; Y. Numaguchi; A. Gouldstone; D.E. Ingber; J.J. Fredberg; J.P. Butler; N. Wang Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells, Am. J. Physiol., Volume 285 (2003), p. C1082-C1090

[130] Y. Hwang; A.I. Barakat Dynamics of mechanical signal transmission through prestressed actin stress fibers, PLoS ONE, Volume 7 (2012), p. e35343

[131] Y. Hwang; C.L.M. Gouget; A.I. Barakat Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells, Commun. Integr. Biol., Volume 5 (2012), pp. 538-542

[132] Q. Zhang; J.N. Skepper; F. Yang; J.D. Davies; L. Hegyi; R.G. Roberts; P.L. Weissberg; J.A. Ellis; C.M. Shanahan Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues, J. Cell Sci., Volume 114 (2001), pp. 4485-4498

[133] D.A. Starr; M. Han Role of ANC-1 in tethering nuclei to the actin cytoskeleton, Science, Volume 298 (2002), pp. 406-409

[134] Y.Y. Zhen; T. Libotte; M. Munck; A.A. Noegel; E. Korenbaum NUANCE a giant protein connecting the nucleus and actin cytoskeleton, J. Cell Sci., Volume 115 (2002), pp. 3207-3222

[135] D.A. Starr; M. Han ANChors away: an actin based mechanism of nuclear positioning, J. Cell Sci., Volume 116 (2003), pp. 211-216

[136] V.C. Padmakumar; S. Abraham; S. Braune; A.A. Noegel; B. Tunggal; I. Karakesisoglou; E. Korenbaum Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton, Exp. Cell Res., Volume 295 (2004), pp. 330-339

[137] T. Libotte; H. Zaim; S. Abraham; V.C. Padmakumar; M. Schneider; W. Lu; M. Munck; C. Hutchison; M. Wehnert; B. Fahrenkrog; U. Sauder; U. Aebi; A.A. Noegel; I. Karakesisoglou Lamin A/C-dependent localization of nesprin-2, a giant scaffolder at the nuclear envelope, Mol. Biol. Cell, Volume 16 (2005), pp. 3411-3424

[138] K. Wilhelmsen; S.H. Litjens; I. Kuikman; N. Tshimbalanga; H. Janssen; I. van den Bout; K. Raymond; A. Sonnenberg Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin, J. Cell Biol., Volume 171 (2005), pp. 799-810

[139] V.C. Padmakumar; T. Libotte; W. Lu; H. Zaim; S. Abraham; A.A. Noegel; J. Gotzmann; R. Foisner; I. Karakesisoglou The inner nuclear membrane protein Sun1 mediates the anchorage of nesprin-2 to the nuclear envelope, J. Cell Sci., Volume 118 (2005), pp. 3419-3430

[140] R.M. Grady; D.A. Starr; G.L. Ackerman; J.R. Sanes; M. Han Syne proteins anchor muscle nuclei at the neuromuscular junction, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 4359-4364

[141] J.T. Morgan; E.R. Pfeiffer; T.L. Thirkill; P. Kumar; G. Peng; H.N. Fridolfsson; G.C. Douglas; D.A. Starr; A.I. Barakat Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization, Mol. Biol. Cell, Volume 22 (2011), pp. 4324-4334

[142] J.T. Morgan Internal and external biophysical regulation of endothelial cell morphology and function, University of California, Davis, 2011 (Ph.D. dissertation)

[143] T.J. Chancellor; J. Lee; C.K. Thodeti; T. Lele Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation, Biophys. J., Volume 99 (2010), pp. 115-123

[144] M. Brosig; J. Ferralli; L. Gelman; M. Chiquet; R. Chiquet-Ehrismann Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis, Int. J. Biochem. Cell Biol., Volume 42 (2010), pp. 1717-1728

[145] M.L. Lombardi; D.E. Jaalouk; C.M. Shanahan; B. Burke; K.J. Roux; J. Lammerding The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton, J. Biol. Chem., Volume 286 (2011), pp. 26743-26753

[146] B.D. Hoffman; C. Grashoff; M.A. Schwartz Dynamic molecular processes mediate cellular mechanotransduction, Nature, Volume 475 (2011), pp. 316-323

[147] S.E. Lee; R.D. Kamm; M.R.K. Mofrad Force-induced activation of Talin and its possible role in focal adhesion mechanotransduction, J. Biomech., Volume 40 (2007), pp. 2096-2106

[148] A. del Rio; R. Perez-Jimenez; R. Liu; P. Roca-Cusachs; J.M. Fernandez; M.P. Sheetz Stretching single talin rod molecules activates vinculin binding, Science, Volume 323 (2009), pp. 638-641

[149] M. Osawa; M. Masuda; K. Kusano; K. Fujiwara Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?, J. Cell Biol., Volume 158 (2002), pp. 773-785

[150] C.P. Brangwynne; F.C. MacKintosh; S. Kumar; N.A. Geisse; J. Talbot; L. Mahadevan; K.K. Parker; D.E. Ingber; D.A. Weitz Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement, J. Cell Biol., Volume 173 (2006), pp. 733-741

[151] J.T. Morgan; J.A. Wood; N.M. Shah; M.L. Hughbanks; P. Russel; A.I. Barakat; C.J. Murphy Integration of basal topographic cues and apical shear stress in vascular endothelial cells, Biomaterials, Volume 33 (2012), pp. 4126-4135

[152] L. Zhu; P. He Platelet activating factor increases endothelial [Ca2+]i and nitric oxide production in individually perfused intact microvessels, Am. J. Physiol., Volume 288 (2005), p. H2869-H2877

[153] X. Zhou; P. He Endothelial [Ca2+]i and caveolin-1 antagonistically regulate eNOS activity and microvessel permeability in rat venules, Cardiovasc. Res., Volume 87 (2010), pp. 340-347

[154] D.R. Potter; J. Jiang; E.R. Damiano The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro, Circ. Res., Volume 104 (2009), pp. 1318-1325

[155] J.C. Lasheras The biomechanics of arterial aneurysms, Annu. Rev. Fluid Mech., Volume 39 (2007), pp. 293-319

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Living fluids

Chaouqi Misbah; Christian Wagner

C. R. Phys (2013)


Biologie du vieillissement artériel et artériosclérose

Charles-Henry Cottart; Christelle Laguillier; Valérie Nivet-Antoine; ...

C. R. Biol (2009)


Modeling of the effects of IL-17 and TNF-α on endothelial cells and thrombus growth

Anass Bouchnita; Pierre Miossec; Alen Tosenberger; ...

C. R. Biol (2017)