Comptes Rendus
Living fluids/Fluides vivants
Blood viscosity in microvessels: Experiment and theory
[La viscosité du sang dans les microvaisseaux : Expérience et théorie]
Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 470-478.

La viscosité apparente du sang circulant à travers des tubes en verre décroît fortement quand le diamètre du tube décroît dʼune valeur dʼenviron 300 μm à environ 10 μm. Ce phénomène, connu sous le nom dʼeffet Fåhraeus–Lindqvist, résulte du fait que le sang est une suspension concentrée de globules rouges déformables dʼune dimension typique dʼenviron 8 μm. La majeure partie de la résistance à lʼécoulement sanguin à travers le réseau circulatoire a lieu dans des vaisseaux sanguins ayant à peu près la même taille que les globules rouges. La viscosité apparente du sang dans des microvaisseaux in vivo se trouve être bien plus importante que celle mesurée in vitro dans des tubes en verre de même taille. Nous passons en revue les mesures expérimentales de la viscosité apparente effectuées in vivo et in vitro, ainsi que les progrès théoriques réalisés vers une description quantitative des mécanismes mis en jeu.

The apparent viscosity of blood flowing through narrow glass tubes decreases strongly with decreasing tube diameter over the range from about 300 μm to about 10 μm. This phenomenon, known as the Fåhraeus–Lindqvist effect, occurs because blood is a concentrated suspension of deformable red blood cells with a typical dimension of about 8 μm. Most of the resistance to blood flow through the circulatory system resides in microvessels with diameters in this range. Apparent viscosity of blood in microvessels in vivo has been found to be significantly higher than in glass tubes with corresponding diameters. Here we review experimental observations of bloodʼs apparent viscosity in vitro and in vivo, and progress towards a quantitative theoretical understanding of the mechanisms involved.

Publié le :
DOI : 10.1016/j.crhy.2013.04.002
Keywords: Capillary, Microcirculation, Red blood cell, Rheology
Mot clés : Capillaire, Microcirculation, Globules rouges, Rhéologie

Timothy W. Secomb 1 ; Axel R. Pries 2

1 Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
2 Department of Physiology and CCR, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
@article{CRPHYS_2013__14_6_470_0,
     author = {Timothy W. Secomb and Axel R. Pries},
     title = {Blood viscosity in microvessels: {Experiment} and theory},
     journal = {Comptes Rendus. Physique},
     pages = {470--478},
     publisher = {Elsevier},
     volume = {14},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crhy.2013.04.002},
     language = {en},
}
TY  - JOUR
AU  - Timothy W. Secomb
AU  - Axel R. Pries
TI  - Blood viscosity in microvessels: Experiment and theory
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 470
EP  - 478
VL  - 14
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.04.002
LA  - en
ID  - CRPHYS_2013__14_6_470_0
ER  - 
%0 Journal Article
%A Timothy W. Secomb
%A Axel R. Pries
%T Blood viscosity in microvessels: Experiment and theory
%J Comptes Rendus. Physique
%D 2013
%P 470-478
%V 14
%N 6
%I Elsevier
%R 10.1016/j.crhy.2013.04.002
%G en
%F CRPHYS_2013__14_6_470_0
Timothy W. Secomb; Axel R. Pries. Blood viscosity in microvessels: Experiment and theory. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 470-478. doi : 10.1016/j.crhy.2013.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.002/

[1] J.-L.-M. Poiseuille (1846), pp. 433-544

[2] T.W. Secomb Hydrodynamics of Capsules and Cells (C. Pozrikidis, ed.), Chapman & Hall/CRC, Boca Raton, Florida, 2003, pp. 163-196

[3] P. Martini; A. Pierach; E. Schreyer Dt. Arch. Klin. Med., 169 (1930), pp. 212-222

[4] R. Fåhraeus; T. Lindqvist Am. J. Physiol., 96 (1931), pp. 562-568

[5] A.R. Pries; D. Neuhaus; P. Gaehtgens Am. J. Physiol., 263 (1992), p. H1770-H1778

[6] A.R. Pries; T.W. Secomb Handbook of Physiology: Microcirculation (R.F. Tuma; W.N. Duran; K. Ley, eds.), Academic Press, San Diego, 2008, pp. 3-36

[7] T.W. Secomb Microvasc. Res., 34 (1987), pp. 46-58

[8] H.H. Lipowsky; S. Kovalcheck; B.W. Zweifach Circ. Res., 43 (1978), pp. 738-749

[9] H.H. Lipowsky; S. Usami; S. Chien Microvasc. Res., 19 (1980), pp. 297-319

[10] A.R. Pries; T.W. Secomb; P. Gaehtgens; J.F. Gross Circ. Res., 67 (1990), pp. 826-834

[11] A.R. Pries; T.W. Secomb; T. Gessner; M.B. Sperandio; J.F. Gross; P. Gaehtgens Circ. Res., 75 (1994), pp. 904-915

[12] T.W. Secomb; R. Hsu Microcirculation, 4 (1997), pp. 421-427

[13] T.W. Secomb; B. Styp-Rekowska; A.R. Pries Ann. Biomed. Eng., 35 (2007), pp. 755-765

[14] A.R. Pries; T.W. Secomb; P. Gaehtgens Pflügers Arch., 440 (2000), pp. 653-666

[15] A.R. Pries; T.W. Secomb Am. J. Physiol., Heart Circ. Physiol., 289 (2005), p. H2657-H2664

[16] R. Skalak Microcirculation, vol. I (J. Grayson; W. Zingg, eds.), Plenum Press, New York, 1976, pp. 53-70

[17] E.A. Evans; R.M. Hochmuth Biophys. J., 16 (1976), pp. 1-11

[18] E.A. Evans; R. Skalak Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, Florida, 1980

[19] D.E. Discher; N. Mohandas; E.A. Evans Science, 266 (1994), pp. 1032-1035

[20] E.A. Evans Biophys. J., 43 (1983), pp. 27-30

[21] A.C.L. Barnard; L. Lopez; J.D. Hellums Microvasc. Res., 1 (1968), pp. 23-34

[22] M.J. Lighthill J. Fluid Mech., 34 (1968), pp. 113-143

[23] P.R. Zarda; S. Chien; R. Skalak Computational Methods for Fluid–Solid Interaction Problems (T. Belytschko; T.L. Geers, eds.), American Society of Mechanical Engineers, New York, 1977, pp. 65-82

[24] T.W. Secomb; R. Skalak; N. Özkaya; J.F. Gross J. Fluid Mech., 163 (1986), pp. 405-423

[25] P. Gaehtgens; C. Dührssen; K.H. Albrecht Blood Cells, 6 (1980), pp. 799-812

[26] G. Tomaiuolo; M. Simeone; V. Martinelli; B. Rotoli; S. Guido Soft Matter, 5 (2009), pp. 3736-3740

[27] C. Pozrikidis Phys. Fluids, 17 (2005), p. 031503

[28] R. Hsu; T.W. Secomb J. Biomech. Eng., 111 (1989), pp. 147-151

[29] E.R. Damiano Microvasc. Res., 55 (1998), pp. 77-91

[30] T.W. Secomb; R. Hsu; A.R. Pries Am. J. Physiol., 274 (1998), p. H1016-H1022

[31] J. Feng; S. Weinbaum J. Fluid Mech., 422 (2000), pp. 281-317

[32] T.W. Secomb; R. Hsu; A.R. Pries Am. J. Physiol., Heart Circ. Physiol., 281 (2001), p. H629-H636

[33] H. Vink; B.R. Duling Circ. Res., 79 (1996), pp. 581-589

[34] H. Vink; B.R. Duling Am. J. Physiol., Heart Circ. Physiol., 278 (2000), p. H285-H289

[35] T.W. Secomb; R. Hsu; A.R. Pries Biorheology, 38 (2001), pp. 143-150

[36] S. Weinbaum; X. Zhang; Y. Han; H. Vink; S.C. Cowin Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 7988-7995

[37] T.W. Secomb; R. Hsu; A.R. Pries Microcirculation, 9 (2002), pp. 189-196

[38] V. Vand J. Phys. Colloid Chem., 52 (1948), pp. 277-299

[39] T.W. Secomb Symp. Soc. Exp. Biol., 49 (1995), pp. 305-321

[40] J.L. McWhirter; H. Noguchi; G. Gompper Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 6039-6043

[41] S.K. Doddi; P. Bagchi Phys. Rev. E, 79 (2009), p. 046318

[42] D.A. Fedosov; B. Caswell; A.S. Popel; G.E. Karniadakis Microcirculation, 17 (2010), pp. 615-628

[43] P. Pranay; R.G. Henríquez-Rivera; M.D. Graham Phys. Fluids, 24 (2012), p. 061902

[44] H.L. Goldsmith Fed. Proc., 30 (1971), pp. 1578-1590

[45] L.G. Leal Annu. Rev. Fluid Mech., 12 (1980), pp. 435-476

[46] D. Leighton; A. Acrivos J. Fluid Mech., 181 (1987), pp. 415-439

[47] G. Coupier; B. Kaoui; T. Podgorski; C. Misbah Phys. Fluids, 20 (2008), p. 111702

[48] G. Bugliarello; J. Sevilla Biorheology, 7 (1970), pp. 85-107

[49] J.M. Skotheim; L. Mahadevan Phys. Fluids, 17 (2005), p. 092101

[50] D.S. Hariprasad; T.W. Secomb J. Fluid Mech., 705 (2012), pp. 195-212

[51] J. Beaucourt; T. Biben; C. Misbah Europhys. Lett., 67 (2004), pp. 676-682

[52] K.H. Wong; J.M. Chan; R.D. Kamm; J. Tien Annu. Rev. Biomed. Eng., 14 (2012), pp. 205-230

[53] M. Abkarian; M. Faivre; H.A. Stone Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 538-542

[54] A.M. Forsyth; J. Wan; W.D. Ristenpart; H.A. Stone Microvasc. Res., 80 (2010), pp. 37-43

[55] J.P. Shelby; J. White; K. Ganesan; P.K. Rathod; D.T. Chiu Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 14618-14622

[56] J.M. Higgins; D.T. Eddington; S.N. Bhatia; L. Mahadevan Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 20496-20500

[57] H.H. Dietrich; M.L. Ellsworth; R.S. Sprague; R.G. Dacey Am. J. Physiol., Heart Circ. Physiol., 278 (2000), p. H1294-H1298

[58] J. Wan; A.M. Forsyth; H.A. Stone Integr. Biol. (Camb.), 3 (2011), pp. 972-981

[59] A.M. Forsyth; J. Wan; P.D. Owrutsky; M. Abkarian; H.A. Stone Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 10986-10991

[60] A.R. Pries; K. Ley; M. Claassen; P. Gaehtgens Microvasc. Res., 38 (1989), pp. 81-101

[61] S. Yang; A. Undar; J.D. Zahn Lab Chip, 6 (2006), pp. 871-880

[62] X. Li; A.S. Popel; G.E. Karniadakis Phys. Biol., 9 (2012), p. 026010

Cité par Sources :

Commentaires - Politique