[La viscosité du sang dans les microvaisseaux : Expérience et théorie]
La viscosité apparente du sang circulant à travers des tubes en verre décroît fortement quand le diamètre du tube décroît dʼune valeur dʼenviron 300 μm à environ 10 μm. Ce phénomène, connu sous le nom dʼeffet Fåhraeus–Lindqvist, résulte du fait que le sang est une suspension concentrée de globules rouges déformables dʼune dimension typique dʼenviron 8 μm. La majeure partie de la résistance à lʼécoulement sanguin à travers le réseau circulatoire a lieu dans des vaisseaux sanguins ayant à peu près la même taille que les globules rouges. La viscosité apparente du sang dans des microvaisseaux in vivo se trouve être bien plus importante que celle mesurée in vitro dans des tubes en verre de même taille. Nous passons en revue les mesures expérimentales de la viscosité apparente effectuées in vivo et in vitro, ainsi que les progrès théoriques réalisés vers une description quantitative des mécanismes mis en jeu.
The apparent viscosity of blood flowing through narrow glass tubes decreases strongly with decreasing tube diameter over the range from about 300 μm to about 10 μm. This phenomenon, known as the Fåhraeus–Lindqvist effect, occurs because blood is a concentrated suspension of deformable red blood cells with a typical dimension of about 8 μm. Most of the resistance to blood flow through the circulatory system resides in microvessels with diameters in this range. Apparent viscosity of blood in microvessels in vivo has been found to be significantly higher than in glass tubes with corresponding diameters. Here we review experimental observations of bloodʼs apparent viscosity in vitro and in vivo, and progress towards a quantitative theoretical understanding of the mechanisms involved.
Mot clés : Capillaire, Microcirculation, Globules rouges, Rhéologie
Timothy W. Secomb 1 ; Axel R. Pries 2
@article{CRPHYS_2013__14_6_470_0, author = {Timothy W. Secomb and Axel R. Pries}, title = {Blood viscosity in microvessels: {Experiment} and theory}, journal = {Comptes Rendus. Physique}, pages = {470--478}, publisher = {Elsevier}, volume = {14}, number = {6}, year = {2013}, doi = {10.1016/j.crhy.2013.04.002}, language = {en}, }
Timothy W. Secomb; Axel R. Pries. Blood viscosity in microvessels: Experiment and theory. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 470-478. doi : 10.1016/j.crhy.2013.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.002/
[1]
(1846), pp. 433-544[2] Hydrodynamics of Capsules and Cells (C. Pozrikidis, ed.), Chapman & Hall/CRC, Boca Raton, Florida, 2003, pp. 163-196
[3] Dt. Arch. Klin. Med., 169 (1930), pp. 212-222
[4] Am. J. Physiol., 96 (1931), pp. 562-568
[5] Am. J. Physiol., 263 (1992), p. H1770-H1778
[6] Handbook of Physiology: Microcirculation (R.F. Tuma; W.N. Duran; K. Ley, eds.), Academic Press, San Diego, 2008, pp. 3-36
[7] Microvasc. Res., 34 (1987), pp. 46-58
[8] Circ. Res., 43 (1978), pp. 738-749
[9] Microvasc. Res., 19 (1980), pp. 297-319
[10] Circ. Res., 67 (1990), pp. 826-834
[11] Circ. Res., 75 (1994), pp. 904-915
[12] Microcirculation, 4 (1997), pp. 421-427
[13] Ann. Biomed. Eng., 35 (2007), pp. 755-765
[14] Pflügers Arch., 440 (2000), pp. 653-666
[15] Am. J. Physiol., Heart Circ. Physiol., 289 (2005), p. H2657-H2664
[16] Microcirculation, vol. I (J. Grayson; W. Zingg, eds.), Plenum Press, New York, 1976, pp. 53-70
[17] Biophys. J., 16 (1976), pp. 1-11
[18] Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, Florida, 1980
[19] Science, 266 (1994), pp. 1032-1035
[20] Biophys. J., 43 (1983), pp. 27-30
[21] Microvasc. Res., 1 (1968), pp. 23-34
[22] J. Fluid Mech., 34 (1968), pp. 113-143
[23] Computational Methods for Fluid–Solid Interaction Problems (T. Belytschko; T.L. Geers, eds.), American Society of Mechanical Engineers, New York, 1977, pp. 65-82
[24] J. Fluid Mech., 163 (1986), pp. 405-423
[25] Blood Cells, 6 (1980), pp. 799-812
[26] Soft Matter, 5 (2009), pp. 3736-3740
[27] Phys. Fluids, 17 (2005), p. 031503
[28] J. Biomech. Eng., 111 (1989), pp. 147-151
[29] Microvasc. Res., 55 (1998), pp. 77-91
[30] Am. J. Physiol., 274 (1998), p. H1016-H1022
[31] J. Fluid Mech., 422 (2000), pp. 281-317
[32] Am. J. Physiol., Heart Circ. Physiol., 281 (2001), p. H629-H636
[33] Circ. Res., 79 (1996), pp. 581-589
[34] Am. J. Physiol., Heart Circ. Physiol., 278 (2000), p. H285-H289
[35] Biorheology, 38 (2001), pp. 143-150
[36] Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 7988-7995
[37] Microcirculation, 9 (2002), pp. 189-196
[38] J. Phys. Colloid Chem., 52 (1948), pp. 277-299
[39] Symp. Soc. Exp. Biol., 49 (1995), pp. 305-321
[40] Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 6039-6043
[41] Phys. Rev. E, 79 (2009), p. 046318
[42] Microcirculation, 17 (2010), pp. 615-628
[43] Phys. Fluids, 24 (2012), p. 061902
[44] Fed. Proc., 30 (1971), pp. 1578-1590
[45] Annu. Rev. Fluid Mech., 12 (1980), pp. 435-476
[46] J. Fluid Mech., 181 (1987), pp. 415-439
[47] Phys. Fluids, 20 (2008), p. 111702
[48] Biorheology, 7 (1970), pp. 85-107
[49] Phys. Fluids, 17 (2005), p. 092101
[50] J. Fluid Mech., 705 (2012), pp. 195-212
[51] Europhys. Lett., 67 (2004), pp. 676-682
[52] Annu. Rev. Biomed. Eng., 14 (2012), pp. 205-230
[53] Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 538-542
[54] Microvasc. Res., 80 (2010), pp. 37-43
[55] Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 14618-14622
[56] Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 20496-20500
[57] Am. J. Physiol., Heart Circ. Physiol., 278 (2000), p. H1294-H1298
[58] Integr. Biol. (Camb.), 3 (2011), pp. 972-981
[59] Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 10986-10991
[60] Microvasc. Res., 38 (1989), pp. 81-101
[61] Lab Chip, 6 (2006), pp. 871-880
[62] Phys. Biol., 9 (2012), p. 026010
Cité par Sources :
Commentaires - Politique