Comptes Rendus
A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder
[Une revue des simulations Monte Carlo pour le modèle de Bose–Hubbard avec désordre diagonal]
Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 712-724.

Nous passons en revue la physique du modèle de Bose–Hubbard en présence de désordre dans le potentiel chimique, en portant notre attention sur des arguments analytiques récemment publiés en les combinant avec des simulations Monte Carlo quantiques. Mis à part les cas du superfluide et des phases isolantes de Mott qui peuvent advenir dans ce système sans désordre, le désordre conduit à une phase additionnelle, appelée verre de Bose. La topologie du diagramme de phases est contrainte par un théorème prouvant que la phase du verre de Bose doit intervenir entre le superfluide et lʼisolant de Mott, impliquant une transition de Griffiths entre ce dernier et le verre de Bose. Les diagrammes de phase complets en 3d et 2d sont discutés, et nous insistons sur lʼinsensibilité de la ligne de transition entre le superfluide et le verre de Bose au voisinage proche de lʼextrémité du lobe de lʼisolant de Mott. Nous commentons brièvement les connaissances établies et les questions qui demeurent dans le cas 1d, et présentons un rapide survol des travaux numériques sur les modèles liés.

We review the physics of the Bose–Hubbard model with disorder in the chemical potential focusing on recently published analytical arguments in combination with quantum Monte Carlo simulations. Apart from the superfluid and Mott insulator phases that can occur in this system without disorder, disorder allows for an additional phase, called the Bose glass phase. The topology of the phase diagram is subject to strong theorems proving that the Bose Glass phase must intervene between the superfluid and the Mott insulator and implying a Griffiths transition between the Mott insulator and the Bose glass. The full phase diagrams in 3d and 2d are discussed, and we zoom in on the insensitivity of the transition line between the superfluid and the Bose glass in the close vicinity of the tip of the Mott insulator lobe. We briefly comment on the established and remaining questions in the 1d case, and give a short overview of numerical work on related models.

Publié le :
DOI : 10.1016/j.crhy.2013.08.005
Keywords: Bose–Hubbard, Superfluidity, Mott insulator, Bose glass, Monte Carlo simulations, Lifshitz tails
Mot clés : Bose–Hubbard, Superfluidité, Isolant de Mott, Verre de Bose, Simulations Monte Carlo, Queues de Lifshitz
Lode Pollet 1

1 Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, Theresienstraße 37, 80333 Munich, Germany
@article{CRPHYS_2013__14_8_712_0,
     author = {Lode Pollet},
     title = {A review of {Monte} {Carlo} simulations for the {Bose{\textendash}Hubbard} model with diagonal disorder},
     journal = {Comptes Rendus. Physique},
     pages = {712--724},
     publisher = {Elsevier},
     volume = {14},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crhy.2013.08.005},
     language = {en},
}
TY  - JOUR
AU  - Lode Pollet
TI  - A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 712
EP  - 724
VL  - 14
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.08.005
LA  - en
ID  - CRPHYS_2013__14_8_712_0
ER  - 
%0 Journal Article
%A Lode Pollet
%T A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder
%J Comptes Rendus. Physique
%D 2013
%P 712-724
%V 14
%N 8
%I Elsevier
%R 10.1016/j.crhy.2013.08.005
%G en
%F CRPHYS_2013__14_8_712_0
Lode Pollet. A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 712-724. doi : 10.1016/j.crhy.2013.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.005/

[1] T. Giamarchi; H.J. Schulz Europhys. Lett., 3 (1987), p. 1287

[2] T. Giamarchi; H.J. Schulz Phys. Rev. B, 37 (1998), p. 325

[3] M.P.A. Fisher; P.B. Weichman; G. Grinstein; D.S. Fisher Phys. Rev. B, 40 (1989), p. 546

[4] J.K. Freericks; H. Monien Phys. Rev. B, 53 (1996), p. 2691

[5] R.T. Scalettar; G.G. Batrouni; G.T. Zimanyi Phys. Rev. Lett., 66 (1991), p. 3144

[6] W. Krauth; N. Trivedi; D. Ceperley Phys. Rev. Lett., 67 (1991), p. 2307

[7] L. Zhang; M. Ma Phys. Rev. B, 45 (1992), p. 4855

[8] K.G. Singh; D.S. Rokhsar Phys. Rev. B, 46 (1992), p. 3002

[9] M. Makivić; N. Trivedi; S. Ullah Phys. Rev. Lett., 71 (1993), p. 2307

[10] M. Wallin; E.S. Sørensen; S.M. Girvin; A.P. Young Phys. Rev. B, 49 (1994), p. 12115

[11] F. Pazmandi; G. Zimanyi; R. Scalettar Phys. Rev. Lett., 75 (1995), p. 1356

[12] R.V. Pai; R. Pandit; H.R. Krishnamurthy; S. Ramasesha Phys. Rev. Lett., 76 (1996), p. 2937

[13] B.V. Svistunov Phys. Rev. B, 54 (1996), p. 16131

[14] F. Pazmandi; G.T. Zimanyi Phys. Rev. B, 57 (1998), p. 5044

[15] J. Kisker; H. Rieger Phys. Rev. B, 55 (1997) no. R11, p. 981

[16] I.F. Herbut Phys. Rev. Lett., 79 (1997), p. 3502

[17] I.F. Herbut Phys. Rev. B, 57 (1998), p. 13729

[18] P. Sen; N. Trivedi; D.M. Ceperley Phys. Rev. Lett., 86 (2001), p. 4092

[19] N. Prokofʼev; B. Svistunov Phys. Rev. Lett., 92 (2004), p. 015703

[20] J. Wu; P. Phillips Phys. Rev. B, 78 (2008), p. 014515

[21] U. Bissbort; W. Hofstetter EPL, 86 (2009), p. 50007

[22] P.B. Weichman; R. Mukhopadhyay Phys. Rev. B, 77 (2008), p. 214516

[23] P.B. Weichman Mod. Phys. Lett. B, 22 (2008), p. 2623

[24] J. Carrasquilla; F. Becca; A. Trambettoni; M. Fabrizio Phys. Rev. B, 81 (2010), p. 195129

[25] J. Carrasquilla; F. Becca; M. Fabrizio Phys. Rev. B, 83 (2011), p. 245101

[26] S. Sachdev Quantum Phase Transitions, Cambridge University Press, New York, 1999

[27] T. Giamarchi; P. Le Doussal; E. Orignac Phys. Rev. B, 64 (2001), p. 245119

[28] G.M. Falco; T. Nattermann; V.L. Pokrovsky Phys. Rev. B, 80 (2009), p. 104515

[29] P. Lugan; D. Clément; P. Bouyer; A. Aspect; M. Lewenstein; L. Sanchez-Palencia Phys. Rev. Lett., 98 (2007), p. 170403

[30] L. Pollet; N.V. Prokofʼev; B.V. Svistunov; M. Troyer Phys. Rev. Lett., 103 (2009), p. 140402

[31] V. Gurarie; L. Pollet; N.V. Prokofʼev; B.V. Svistunov; M. Troyer Phys. Rev. B, 80 (2009), p. 214519

[32] L. Pollet Rep. Prog. Phys., 75 (2012), p. 094501

[33] N.V. Prokofʼev; B.V. Svistunov; I.S. Tupitsyn JETP, 87 (1998), p. 310

[34] G.D. Mahan Many Particle Physics, Springer Verlag, 2000

[35] J.W. Negele; H. Orland Quantum Many-Particle Systems, Perseus Books, 1988

[36] A.L. Fetter; J.D. Walecka Quantum Theory of Many-Particle Systems, McGraw-Hill, San Francisco, 1971

[37] E.L. Pollock; D.M. Ceperley Phys. Rev. B, 36 (1987), p. 8343

[38] A.W. Sandvik Phys. Rev. B, 59 (1999), p. 14157R

[39] O.F. Syljuåsen; A.W. Sandvik Phys. Rev. E, 66 (2002), p. 046701

[40] L. Pollet; K. Van Houcke; S. Rombouts J. Comput. Phys., 225 (2007), p. 2249

[41] V.G. Rousseau Phys. Rev. E, 77 (2007), p. 056705

[42] V.G. Rousseau Phys. Rev. E, 78 (2008), p. 056707

[43] S.M.A. Rombouts; K. Van Houcke; L. Pollet Phys. Rev. Lett., 96 (2006), p. 180603

[44] K. Van Houcke; S.M.A. Rombouts; L. Pollet Phys. Rev. E, 73 (2006), p. 056703

[45] A. Priyadarshee; S. Chandrasekharan; J.-W. Lee; H.U. Baranger Phys. Rev. Lett., 97 (2006), p. 115703

[46] P.B. Weichman; R. Mukhopadhyay Phys. Rev. Lett., 98 (2007), p. 245701

[47] W. Krauth; N. Trivedi Europhys. Lett., 14 (1991), p. 627

[48] B. Bulka; M. Schreiber; B. Kramer Z. Phys. B, Condens. Matter, 66 (1987), p. 21

[49] M.B. Isichenko Rev. Mod. Phys., 64 (1992), p. 961

[50] A. Niederle; H. Rieger New J. Phys., 15 (2013), p. 075029

[51] B. Capogrosso-Sansone; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. B, 75 (2007), p. 134302

[52] F. Lin; E.S. Sørensen; D.M. Ceperley Phys. Rev. B, 84 (2011), p. 094507

[53] S.G. Söyler; M. Kiselev; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. Lett., 107 (2011), p. 185301

[54] K. Damle; S. Sachdev Phys. Rev. B, 56 (1997), p. 8714

[55] E.S. Sørensen; M. Wallin; S.M. Girvin; A.P. Young Phys. Rev. B, 46 (1992), p. 3002

[56] N.V. Prokofev; B.V. Svistunov Phys. Rev. Lett., 80 (1998), p. 4355

[57] S. Rapsch; U. Schollwöck; W. Zwerger Europhys. Lett., 46 (1999), p. 559

[58] V.A. Kashurnikov; A.I. Podlivaev; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. B, 53 (1996), p. 13091

[59] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. Lett., 93 (2004), p. 150402

[60] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. Lett., 100 (2008), p. 170402

[61] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. B, 81 (2010), p. 174528

[62] G. Refael, A. Altman, to be published in CRS.

[63] Z. Ristivojevic; A. Petkovic; P. Le Doussal; T. Giamarchi Phys. Rev. Lett., 109 (2012), p. 026402

[64] L. Pollet; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. B, 87 (2013), p. 144203

[65] A.M. Goldman; Y. Liu Physica D, 83 (1995), p. 163

[66] H.S.J. van der Zant et al. Phys. Rev. B, 54 (1996), p. 10081

[67] P.A. Crowell; F.W. Van Keuls; J.D. Reppy Phys. Rev. B, 55 (1997), p. 12620

[68] G.A. Csáthy; J.D. Reppy; M.W.H. Chan Phys. Rev. Lett., 91 (2003), p. 235301

[69] M. White; M. Pasienski; C. McKay; S.Q. Zhou; D.M. Ceperley; B. DeMarco Phys. Rev. Lett., 102 (2009), p. 055301

[70] M. Pasienski; D. McKay; M. White; B. DeMarco Nat. Phys., 6 (2010), p. 677

[71] S.Q. Zhou; D.M. Ceperley Phys. Rev. A, 81 (2010), p. 013402

[72] J. Billy; V. Josse; Z. Zuo; A. Bernard; B. Hambrecht; P. Lugan; D. Clément; L. Sanchez-Palencia; P. Bouyer; A. Aspect Nature, 453 (2008), p. 891

[73] G. Roati; C. DʼErrico; L. Fallani; M. Fattori; C. Fort; M. Zaccanti; G. Modugno; M. Modugno; M. Inguscio Nature, 453 (2008), p. 895

[74] F. Yamada; H. Tanaka; T. Ono; T. Nojiri Phys. Rev. B, 83 (2011), p. 020409

[75] T. Hong; A. Zheludev; H. Manaka; L.P. Regnault Phys. Rev. B, 81 (2010), p. 060410

[76] R. Yu; L. Yin; N.S. Sullivan; J.S. Xia; C. Huan; A. Paduan-Filho; N.F. Oliveira; S. Haas; A. Steppke; C.F. Miclea; F. Weickert; R. Movshovich; E.D. Mun; V.S. Zapf; T. Roscilde Nature, 489 (2012), p. 379

[77] T. Roscilde; S. Haas Phys. Rev. Lett., 99 (2007), p. 047205

[78] A. Zheludev; D. Hüvonen Phys. Rev. B, 83 (2011), p. 216401

[79] E. Wulf; S. Mühlbauer; T. Yankova; A. Zheludev Phys. Rev. B, 84 (2011), p. 174414

[80] A. Zheludev; T. Roscilde (to be published in CRS) | arXiv

[81] S. Pilati; S. Giorgini; N.V. Prokofʼev Phys. Rev. Lett., 102 (2009), p. 150402

[82] S. Pilati; S. Giorgini; M. Modugno; N.V. Prokofʼev New J. Phys., 12 (2010), p. 073003

[83] M.C. Gordillo; D.M. Ceperley Phys. Rev. Lett., 85 (2000), p. 4735

[84] K.G. Balabanyan; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. Lett., 95 (2005), p. 055701

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dirty-boson physics with magnetic insulators

Andrey Zheludev; Tommaso Roscilde

C. R. Phys (2013)


Strong disorder renormalization group primer and the superfluid–insulator transition

Gil Refael; Ehud Altman

C. R. Phys (2013)


Quantum simulation of zero-temperature quantum phases and incompressible states of light via non-Markovian reservoir engineering techniques

José Lebreuilly; Iacopo Carusotto

C. R. Phys (2018)