[Une revue des simulations Monte Carlo pour le modèle de Bose–Hubbard avec désordre diagonal]
We review the physics of the Bose–Hubbard model with disorder in the chemical potential focusing on recently published analytical arguments in combination with quantum Monte Carlo simulations. Apart from the superfluid and Mott insulator phases that can occur in this system without disorder, disorder allows for an additional phase, called the Bose glass phase. The topology of the phase diagram is subject to strong theorems proving that the Bose Glass phase must intervene between the superfluid and the Mott insulator and implying a Griffiths transition between the Mott insulator and the Bose glass. The full phase diagrams in 3d and 2d are discussed, and we zoom in on the insensitivity of the transition line between the superfluid and the Bose glass in the close vicinity of the tip of the Mott insulator lobe. We briefly comment on the established and remaining questions in the 1d case, and give a short overview of numerical work on related models.
Nous passons en revue la physique du modèle de Bose–Hubbard en présence de désordre dans le potentiel chimique, en portant notre attention sur des arguments analytiques récemment publiés en les combinant avec des simulations Monte Carlo quantiques. Mis à part les cas du superfluide et des phases isolantes de Mott qui peuvent advenir dans ce système sans désordre, le désordre conduit à une phase additionnelle, appelée verre de Bose. La topologie du diagramme de phases est contrainte par un théorème prouvant que la phase du verre de Bose doit intervenir entre le superfluide et lʼisolant de Mott, impliquant une transition de Griffiths entre ce dernier et le verre de Bose. Les diagrammes de phase complets en 3d et 2d sont discutés, et nous insistons sur lʼinsensibilité de la ligne de transition entre le superfluide et le verre de Bose au voisinage proche de lʼextrémité du lobe de lʼisolant de Mott. Nous commentons brièvement les connaissances établies et les questions qui demeurent dans le cas 1d, et présentons un rapide survol des travaux numériques sur les modèles liés.
Mots-clés : Bose–Hubbard, Superfluidité, Isolant de Mott, Verre de Bose, Simulations Monte Carlo, Queues de Lifshitz
Lode Pollet 1
@article{CRPHYS_2013__14_8_712_0, author = {Lode Pollet}, title = {A review of {Monte} {Carlo} simulations for the {Bose{\textendash}Hubbard} model with diagonal disorder}, journal = {Comptes Rendus. Physique}, pages = {712--724}, publisher = {Elsevier}, volume = {14}, number = {8}, year = {2013}, doi = {10.1016/j.crhy.2013.08.005}, language = {en}, }
Lode Pollet. A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder. Comptes Rendus. Physique, Disordered systems / Systèmes désordonnés, Volume 14 (2013) no. 8, pp. 712-724. doi : 10.1016/j.crhy.2013.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.005/
[1] Europhys. Lett., 3 (1987), p. 1287
[2] Phys. Rev. B, 37 (1998), p. 325
[3] Phys. Rev. B, 40 (1989), p. 546
[4] Phys. Rev. B, 53 (1996), p. 2691
[5] Phys. Rev. Lett., 66 (1991), p. 3144
[6] Phys. Rev. Lett., 67 (1991), p. 2307
[7] Phys. Rev. B, 45 (1992), p. 4855
[8] Phys. Rev. B, 46 (1992), p. 3002
[9] Phys. Rev. Lett., 71 (1993), p. 2307
[10] Phys. Rev. B, 49 (1994), p. 12115
[11] Phys. Rev. Lett., 75 (1995), p. 1356
[12] Phys. Rev. Lett., 76 (1996), p. 2937
[13] Phys. Rev. B, 54 (1996), p. 16131
[14] Phys. Rev. B, 57 (1998), p. 5044
[15] Phys. Rev. B, 55 (1997) no. R11, p. 981
[16] Phys. Rev. Lett., 79 (1997), p. 3502
[17] Phys. Rev. B, 57 (1998), p. 13729
[18] Phys. Rev. Lett., 86 (2001), p. 4092
[19] Phys. Rev. Lett., 92 (2004), p. 015703
[20] Phys. Rev. B, 78 (2008), p. 014515
[21] EPL, 86 (2009), p. 50007
[22] Phys. Rev. B, 77 (2008), p. 214516
[23] Mod. Phys. Lett. B, 22 (2008), p. 2623
[24] Phys. Rev. B, 81 (2010), p. 195129
[25] Phys. Rev. B, 83 (2011), p. 245101
[26] Quantum Phase Transitions, Cambridge University Press, New York, 1999
[27] Phys. Rev. B, 64 (2001), p. 245119
[28] Phys. Rev. B, 80 (2009), p. 104515
[29] Phys. Rev. Lett., 98 (2007), p. 170403
[30] Phys. Rev. Lett., 103 (2009), p. 140402
[31] Phys. Rev. B, 80 (2009), p. 214519
[32] Rep. Prog. Phys., 75 (2012), p. 094501
[33] JETP, 87 (1998), p. 310
[34] Many Particle Physics, Springer Verlag, 2000
[35] Quantum Many-Particle Systems, Perseus Books, 1988
[36] Quantum Theory of Many-Particle Systems, McGraw-Hill, San Francisco, 1971
[37] Phys. Rev. B, 36 (1987), p. 8343
[38] Phys. Rev. B, 59 (1999), p. 14157R
[39] Phys. Rev. E, 66 (2002), p. 046701
[40] J. Comput. Phys., 225 (2007), p. 2249
[41] Phys. Rev. E, 77 (2007), p. 056705
[42] Phys. Rev. E, 78 (2008), p. 056707
[43] Phys. Rev. Lett., 96 (2006), p. 180603
[44] Phys. Rev. E, 73 (2006), p. 056703
[45] Phys. Rev. Lett., 97 (2006), p. 115703
[46] Phys. Rev. Lett., 98 (2007), p. 245701
[47] Europhys. Lett., 14 (1991), p. 627
[48] Z. Phys. B, Condens. Matter, 66 (1987), p. 21
[49] Rev. Mod. Phys., 64 (1992), p. 961
[50] New J. Phys., 15 (2013), p. 075029
[51] Phys. Rev. B, 75 (2007), p. 134302
[52] Phys. Rev. B, 84 (2011), p. 094507
[53] Phys. Rev. Lett., 107 (2011), p. 185301
[54] Phys. Rev. B, 56 (1997), p. 8714
[55] Phys. Rev. B, 46 (1992), p. 3002
[56] Phys. Rev. Lett., 80 (1998), p. 4355
[57] Europhys. Lett., 46 (1999), p. 559
[58] Phys. Rev. B, 53 (1996), p. 13091
[59] Phys. Rev. Lett., 93 (2004), p. 150402
[60] Phys. Rev. Lett., 100 (2008), p. 170402
[61] Phys. Rev. B, 81 (2010), p. 174528
[62] G. Refael, A. Altman, to be published in CRS.
[63] Phys. Rev. Lett., 109 (2012), p. 026402
[64] Phys. Rev. B, 87 (2013), p. 144203
[65] Physica D, 83 (1995), p. 163
[66] et al. Phys. Rev. B, 54 (1996), p. 10081
[67] Phys. Rev. B, 55 (1997), p. 12620
[68] Phys. Rev. Lett., 91 (2003), p. 235301
[69] Phys. Rev. Lett., 102 (2009), p. 055301
[70] Nat. Phys., 6 (2010), p. 677
[71] Phys. Rev. A, 81 (2010), p. 013402
[72] Nature, 453 (2008), p. 891
[73] Nature, 453 (2008), p. 895
[74] Phys. Rev. B, 83 (2011), p. 020409
[75] Phys. Rev. B, 81 (2010), p. 060410
[76] Nature, 489 (2012), p. 379
[77] Phys. Rev. Lett., 99 (2007), p. 047205
[78] Phys. Rev. B, 83 (2011), p. 216401
[79] Phys. Rev. B, 84 (2011), p. 174414
[80] arXiv
(to be published in CRS) |[81] Phys. Rev. Lett., 102 (2009), p. 150402
[82] New J. Phys., 12 (2010), p. 073003
[83] Phys. Rev. Lett., 85 (2000), p. 4735
[84] Phys. Rev. Lett., 95 (2005), p. 055701
- Specialising neural-network quantum states for the Bose Hubbard model, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 57 (2024) no. 21, p. 215301 | DOI:10.1088/1361-6455/ad7e87
- Multisite gates for state preparation in quantum simulation of the Bose-Hubbard model, Physical Review A, Volume 110 (2024) no. 6 | DOI:10.1103/physreva.110.062615
- Dissipation-induced long-range order in the one-dimensional Bose-Hubbard model, Physical Review B, Volume 110 (2024) no. 11 | DOI:10.1103/physrevb.110.115145
- Liouvillian skin effects and fragmented condensates in an integrable dissipative Bose-Hubbard model, Physical Review Research, Volume 6 (2024) no. 3 | DOI:10.1103/physrevresearch.6.l032067
- Hubbard models for quasicrystalline potentials, Physical Review B, Volume 107 (2023) no. 14 | DOI:10.1103/physrevb.107.144202
- Dynamical vortex transitions in a gate-tunable two-dimensional Josephson junction array, Physical Review B, Volume 108 (2023) no. 13 | DOI:10.1103/physrevb.108.134517
- Quenched random mass disorder in the large N theory of vector bosons, SciPost Physics, Volume 14 (2023) no. 3 | DOI:10.21468/scipostphys.14.3.039
- The mean-field Bose glass in quasicrystalline systems, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 39, p. 395001 | DOI:10.1088/1751-8121/ac1dc0
- Finding the phase diagram of strongly correlated disordered bosons using quantum quenches, Physical Review A, Volume 104 (2021) no. 2 | DOI:10.1103/physreva.104.023323
- Encoding strongly-correlated many-boson wavefunctions on a photonic quantum computer: application to the attractive Bose-Hubbard model, Quantum, Volume 5 (2021), p. 572 | DOI:10.22331/q-2021-11-08-572
- The Effect of Disorder on the Phase Diagrams of Hard-Core Lattice Bosons With Cavity-Mediated Long-Range and Nearest-Neighbor Interactions, Frontiers in Physics, Volume 7 (2020) | DOI:10.3389/fphy.2019.00236
- Numerical linked cluster expansions for inhomogeneous systems, Physical Review A, Volume 102 (2020) no. 1 | DOI:10.1103/physreva.102.013318
- Reduced Density Matrix Functional Theory for Bosons, Physical Review Letters, Volume 124 (2020) no. 18 | DOI:10.1103/physrevlett.124.180603
- Bosonic Haldane insulator in the presence of local disorder: A quantum Monte Carlo study, EPL (Europhysics Letters), Volume 123 (2018) no. 1, p. 10004 | DOI:10.1209/0295-5075/123/10004
- Self-energy functional theory with symmetry breaking for disordered lattice bosons, Quantum Science and Technology, Volume 3 (2018) no. 3, p. 034006 | DOI:10.1088/2058-9565/aabff6
- Infinite occupation number basis of bosons: Solving a numerical challenge, Physical Review B, Volume 95 (2017) no. 22 | DOI:10.1103/physrevb.95.224516
- Probing the Bose glass–superfluid transition using quantum quenches of disorder, Nature Physics, Volume 12 (2016) no. 7, p. 646 | DOI:10.1038/nphys3695
- Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model, New Journal of Physics, Volume 18 (2016) no. 1, p. 015015 | DOI:10.1088/1367-2630/18/1/015015
- Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model, EPL (Europhysics Letters), Volume 111 (2015) no. 2, p. 26004 | DOI:10.1209/0295-5075/111/26004
- Equilibrium phases of two-dimensional bosons in quasiperiodic lattices, Physical Review A, Volume 91 (2015) no. 3 | DOI:10.1103/physreva.91.031604
- Stochastic approximation of dynamical exponent at quantum critical point, Physical Review B, Volume 92 (2015) no. 10 | DOI:10.1103/physrevb.92.104411
- Bose-Hubbard model with random impurities: Multiband and nonlinear hopping effects, Physical Review A, Volume 90 (2014) no. 6 | DOI:10.1103/physreva.90.063634
- Superfluid/Bose-glass transition in one dimension, Physical Review B, Volume 90 (2014) no. 12 | DOI:10.1103/physrevb.90.125144
- Quench dynamics of a disordered array of dissipative coupled cavities, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2169, p. 20140328 | DOI:10.1098/rspa.2014.0328
Cité par 24 documents. Sources : Crossref
Commentaires - Politique