Comptes Rendus
A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder
[Une revue des simulations Monte Carlo pour le modèle de Bose–Hubbard avec désordre diagonal]
Comptes Rendus. Physique, Disordered systems / Systèmes désordonnés, Volume 14 (2013) no. 8, pp. 712-724.

We review the physics of the Bose–Hubbard model with disorder in the chemical potential focusing on recently published analytical arguments in combination with quantum Monte Carlo simulations. Apart from the superfluid and Mott insulator phases that can occur in this system without disorder, disorder allows for an additional phase, called the Bose glass phase. The topology of the phase diagram is subject to strong theorems proving that the Bose Glass phase must intervene between the superfluid and the Mott insulator and implying a Griffiths transition between the Mott insulator and the Bose glass. The full phase diagrams in 3d and 2d are discussed, and we zoom in on the insensitivity of the transition line between the superfluid and the Bose glass in the close vicinity of the tip of the Mott insulator lobe. We briefly comment on the established and remaining questions in the 1d case, and give a short overview of numerical work on related models.

Nous passons en revue la physique du modèle de Bose–Hubbard en présence de désordre dans le potentiel chimique, en portant notre attention sur des arguments analytiques récemment publiés en les combinant avec des simulations Monte Carlo quantiques. Mis à part les cas du superfluide et des phases isolantes de Mott qui peuvent advenir dans ce système sans désordre, le désordre conduit à une phase additionnelle, appelée verre de Bose. La topologie du diagramme de phases est contrainte par un théorème prouvant que la phase du verre de Bose doit intervenir entre le superfluide et lʼisolant de Mott, impliquant une transition de Griffiths entre ce dernier et le verre de Bose. Les diagrammes de phase complets en 3d et 2d sont discutés, et nous insistons sur lʼinsensibilité de la ligne de transition entre le superfluide et le verre de Bose au voisinage proche de lʼextrémité du lobe de lʼisolant de Mott. Nous commentons brièvement les connaissances établies et les questions qui demeurent dans le cas 1d, et présentons un rapide survol des travaux numériques sur les modèles liés.

Publié le :
DOI : 10.1016/j.crhy.2013.08.005
Keywords: Bose–Hubbard, Superfluidity, Mott insulator, Bose glass, Monte Carlo simulations, Lifshitz tails
Mots-clés : Bose–Hubbard, Superfluidité, Isolant de Mott, Verre de Bose, Simulations Monte Carlo, Queues de Lifshitz

Lode Pollet 1

1 Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, Theresienstraße 37, 80333 Munich, Germany
@article{CRPHYS_2013__14_8_712_0,
     author = {Lode Pollet},
     title = {A review of {Monte} {Carlo} simulations for the {Bose{\textendash}Hubbard} model with diagonal disorder},
     journal = {Comptes Rendus. Physique},
     pages = {712--724},
     publisher = {Elsevier},
     volume = {14},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crhy.2013.08.005},
     language = {en},
}
TY  - JOUR
AU  - Lode Pollet
TI  - A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 712
EP  - 724
VL  - 14
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.08.005
LA  - en
ID  - CRPHYS_2013__14_8_712_0
ER  - 
%0 Journal Article
%A Lode Pollet
%T A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder
%J Comptes Rendus. Physique
%D 2013
%P 712-724
%V 14
%N 8
%I Elsevier
%R 10.1016/j.crhy.2013.08.005
%G en
%F CRPHYS_2013__14_8_712_0
Lode Pollet. A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder. Comptes Rendus. Physique, Disordered systems / Systèmes désordonnés, Volume 14 (2013) no. 8, pp. 712-724. doi : 10.1016/j.crhy.2013.08.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.005/

[1] T. Giamarchi; H.J. Schulz Europhys. Lett., 3 (1987), p. 1287

[2] T. Giamarchi; H.J. Schulz Phys. Rev. B, 37 (1998), p. 325

[3] M.P.A. Fisher; P.B. Weichman; G. Grinstein; D.S. Fisher Phys. Rev. B, 40 (1989), p. 546

[4] J.K. Freericks; H. Monien Phys. Rev. B, 53 (1996), p. 2691

[5] R.T. Scalettar; G.G. Batrouni; G.T. Zimanyi Phys. Rev. Lett., 66 (1991), p. 3144

[6] W. Krauth; N. Trivedi; D. Ceperley Phys. Rev. Lett., 67 (1991), p. 2307

[7] L. Zhang; M. Ma Phys. Rev. B, 45 (1992), p. 4855

[8] K.G. Singh; D.S. Rokhsar Phys. Rev. B, 46 (1992), p. 3002

[9] M. Makivić; N. Trivedi; S. Ullah Phys. Rev. Lett., 71 (1993), p. 2307

[10] M. Wallin; E.S. Sørensen; S.M. Girvin; A.P. Young Phys. Rev. B, 49 (1994), p. 12115

[11] F. Pazmandi; G. Zimanyi; R. Scalettar Phys. Rev. Lett., 75 (1995), p. 1356

[12] R.V. Pai; R. Pandit; H.R. Krishnamurthy; S. Ramasesha Phys. Rev. Lett., 76 (1996), p. 2937

[13] B.V. Svistunov Phys. Rev. B, 54 (1996), p. 16131

[14] F. Pazmandi; G.T. Zimanyi Phys. Rev. B, 57 (1998), p. 5044

[15] J. Kisker; H. Rieger Phys. Rev. B, 55 (1997) no. R11, p. 981

[16] I.F. Herbut Phys. Rev. Lett., 79 (1997), p. 3502

[17] I.F. Herbut Phys. Rev. B, 57 (1998), p. 13729

[18] P. Sen; N. Trivedi; D.M. Ceperley Phys. Rev. Lett., 86 (2001), p. 4092

[19] N. Prokofʼev; B. Svistunov Phys. Rev. Lett., 92 (2004), p. 015703

[20] J. Wu; P. Phillips Phys. Rev. B, 78 (2008), p. 014515

[21] U. Bissbort; W. Hofstetter EPL, 86 (2009), p. 50007

[22] P.B. Weichman; R. Mukhopadhyay Phys. Rev. B, 77 (2008), p. 214516

[23] P.B. Weichman Mod. Phys. Lett. B, 22 (2008), p. 2623

[24] J. Carrasquilla; F. Becca; A. Trambettoni; M. Fabrizio Phys. Rev. B, 81 (2010), p. 195129

[25] J. Carrasquilla; F. Becca; M. Fabrizio Phys. Rev. B, 83 (2011), p. 245101

[26] S. Sachdev Quantum Phase Transitions, Cambridge University Press, New York, 1999

[27] T. Giamarchi; P. Le Doussal; E. Orignac Phys. Rev. B, 64 (2001), p. 245119

[28] G.M. Falco; T. Nattermann; V.L. Pokrovsky Phys. Rev. B, 80 (2009), p. 104515

[29] P. Lugan; D. Clément; P. Bouyer; A. Aspect; M. Lewenstein; L. Sanchez-Palencia Phys. Rev. Lett., 98 (2007), p. 170403

[30] L. Pollet; N.V. Prokofʼev; B.V. Svistunov; M. Troyer Phys. Rev. Lett., 103 (2009), p. 140402

[31] V. Gurarie; L. Pollet; N.V. Prokofʼev; B.V. Svistunov; M. Troyer Phys. Rev. B, 80 (2009), p. 214519

[32] L. Pollet Rep. Prog. Phys., 75 (2012), p. 094501

[33] N.V. Prokofʼev; B.V. Svistunov; I.S. Tupitsyn JETP, 87 (1998), p. 310

[34] G.D. Mahan Many Particle Physics, Springer Verlag, 2000

[35] J.W. Negele; H. Orland Quantum Many-Particle Systems, Perseus Books, 1988

[36] A.L. Fetter; J.D. Walecka Quantum Theory of Many-Particle Systems, McGraw-Hill, San Francisco, 1971

[37] E.L. Pollock; D.M. Ceperley Phys. Rev. B, 36 (1987), p. 8343

[38] A.W. Sandvik Phys. Rev. B, 59 (1999), p. 14157R

[39] O.F. Syljuåsen; A.W. Sandvik Phys. Rev. E, 66 (2002), p. 046701

[40] L. Pollet; K. Van Houcke; S. Rombouts J. Comput. Phys., 225 (2007), p. 2249

[41] V.G. Rousseau Phys. Rev. E, 77 (2007), p. 056705

[42] V.G. Rousseau Phys. Rev. E, 78 (2008), p. 056707

[43] S.M.A. Rombouts; K. Van Houcke; L. Pollet Phys. Rev. Lett., 96 (2006), p. 180603

[44] K. Van Houcke; S.M.A. Rombouts; L. Pollet Phys. Rev. E, 73 (2006), p. 056703

[45] A. Priyadarshee; S. Chandrasekharan; J.-W. Lee; H.U. Baranger Phys. Rev. Lett., 97 (2006), p. 115703

[46] P.B. Weichman; R. Mukhopadhyay Phys. Rev. Lett., 98 (2007), p. 245701

[47] W. Krauth; N. Trivedi Europhys. Lett., 14 (1991), p. 627

[48] B. Bulka; M. Schreiber; B. Kramer Z. Phys. B, Condens. Matter, 66 (1987), p. 21

[49] M.B. Isichenko Rev. Mod. Phys., 64 (1992), p. 961

[50] A. Niederle; H. Rieger New J. Phys., 15 (2013), p. 075029

[51] B. Capogrosso-Sansone; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. B, 75 (2007), p. 134302

[52] F. Lin; E.S. Sørensen; D.M. Ceperley Phys. Rev. B, 84 (2011), p. 094507

[53] S.G. Söyler; M. Kiselev; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. Lett., 107 (2011), p. 185301

[54] K. Damle; S. Sachdev Phys. Rev. B, 56 (1997), p. 8714

[55] E.S. Sørensen; M. Wallin; S.M. Girvin; A.P. Young Phys. Rev. B, 46 (1992), p. 3002

[56] N.V. Prokofev; B.V. Svistunov Phys. Rev. Lett., 80 (1998), p. 4355

[57] S. Rapsch; U. Schollwöck; W. Zwerger Europhys. Lett., 46 (1999), p. 559

[58] V.A. Kashurnikov; A.I. Podlivaev; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. B, 53 (1996), p. 13091

[59] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. Lett., 93 (2004), p. 150402

[60] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. Lett., 100 (2008), p. 170402

[61] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. B, 81 (2010), p. 174528

[62] G. Refael, A. Altman, to be published in CRS.

[63] Z. Ristivojevic; A. Petkovic; P. Le Doussal; T. Giamarchi Phys. Rev. Lett., 109 (2012), p. 026402

[64] L. Pollet; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. B, 87 (2013), p. 144203

[65] A.M. Goldman; Y. Liu Physica D, 83 (1995), p. 163

[66] H.S.J. van der Zant et al. Phys. Rev. B, 54 (1996), p. 10081

[67] P.A. Crowell; F.W. Van Keuls; J.D. Reppy Phys. Rev. B, 55 (1997), p. 12620

[68] G.A. Csáthy; J.D. Reppy; M.W.H. Chan Phys. Rev. Lett., 91 (2003), p. 235301

[69] M. White; M. Pasienski; C. McKay; S.Q. Zhou; D.M. Ceperley; B. DeMarco Phys. Rev. Lett., 102 (2009), p. 055301

[70] M. Pasienski; D. McKay; M. White; B. DeMarco Nat. Phys., 6 (2010), p. 677

[71] S.Q. Zhou; D.M. Ceperley Phys. Rev. A, 81 (2010), p. 013402

[72] J. Billy; V. Josse; Z. Zuo; A. Bernard; B. Hambrecht; P. Lugan; D. Clément; L. Sanchez-Palencia; P. Bouyer; A. Aspect Nature, 453 (2008), p. 891

[73] G. Roati; C. DʼErrico; L. Fallani; M. Fattori; C. Fort; M. Zaccanti; G. Modugno; M. Modugno; M. Inguscio Nature, 453 (2008), p. 895

[74] F. Yamada; H. Tanaka; T. Ono; T. Nojiri Phys. Rev. B, 83 (2011), p. 020409

[75] T. Hong; A. Zheludev; H. Manaka; L.P. Regnault Phys. Rev. B, 81 (2010), p. 060410

[76] R. Yu; L. Yin; N.S. Sullivan; J.S. Xia; C. Huan; A. Paduan-Filho; N.F. Oliveira; S. Haas; A. Steppke; C.F. Miclea; F. Weickert; R. Movshovich; E.D. Mun; V.S. Zapf; T. Roscilde Nature, 489 (2012), p. 379

[77] T. Roscilde; S. Haas Phys. Rev. Lett., 99 (2007), p. 047205

[78] A. Zheludev; D. Hüvonen Phys. Rev. B, 83 (2011), p. 216401

[79] E. Wulf; S. Mühlbauer; T. Yankova; A. Zheludev Phys. Rev. B, 84 (2011), p. 174414

[80] A. Zheludev; T. Roscilde (to be published in CRS) | arXiv

[81] S. Pilati; S. Giorgini; N.V. Prokofʼev Phys. Rev. Lett., 102 (2009), p. 150402

[82] S. Pilati; S. Giorgini; M. Modugno; N.V. Prokofʼev New J. Phys., 12 (2010), p. 073003

[83] M.C. Gordillo; D.M. Ceperley Phys. Rev. Lett., 85 (2000), p. 4735

[84] K.G. Balabanyan; N.V. Prokofʼev; B.V. Svistunov Phys. Rev. Lett., 95 (2005), p. 055701

  • Michael Y Pei; Stephen R Clark Specialising neural-network quantum states for the Bose Hubbard model, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 57 (2024) no. 21, p. 215301 | DOI:10.1088/1361-6455/ad7e87
  • Pranjal Praneel; Thomas G. Kiely; Erich J. Mueller; Andre G. Petukhov Multisite gates for state preparation in quantum simulation of the Bose-Hubbard model, Physical Review A, Volume 110 (2024) no. 6 | DOI:10.1103/physreva.110.062615
  • Afonso L. S. Ribeiro; Paul McClarty; Pedro Ribeiro; Manuel Weber Dissipation-induced long-range order in the one-dimensional Bose-Hubbard model, Physical Review B, Volume 110 (2024) no. 11 | DOI:10.1103/physrevb.110.115145
  • Christopher Ekman; Emil J. Bergholtz Liouvillian skin effects and fragmented condensates in an integrable dissipative Bose-Hubbard model, Physical Review Research, Volume 6 (2024) no. 3 | DOI:10.1103/physrevresearch.6.l032067
  • E. Gottlob; U. Schneider Hubbard models for quasicrystalline potentials, Physical Review B, Volume 107 (2023) no. 14 | DOI:10.1103/physrevb.107.144202
  • C. G. L. Bøttcher; F. Nichele; J. Shabani; C. J. Palmstrøm; C. M. Marcus Dynamical vortex transitions in a gate-tunable two-dimensional Josephson junction array, Physical Review B, Volume 108 (2023) no. 13 | DOI:10.1103/physrevb.108.134517
  • Han Ma Quenched random mass disorder in the large N theory of vector bosons, SciPost Physics, Volume 14 (2023) no. 3 | DOI:10.21468/scipostphys.14.3.039
  • Dean Johnstone; Patrik Öhberg; Callum W Duncan The mean-field Bose glass in quasicrystalline systems, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 39, p. 395001 | DOI:10.1088/1751-8121/ac1dc0
  • L. Villa; S. J. Thomson; L. Sanchez-Palencia Finding the phase diagram of strongly correlated disordered bosons using quantum quenches, Physical Review A, Volume 104 (2021) no. 2 | DOI:10.1103/physreva.104.023323
  • Saad Yalouz; Bruno Senjean; Filippo Miatto; Vedran Dunjko Encoding strongly-correlated many-boson wavefunctions on a photonic quantum computer: application to the attractive Bose-Hubbard model, Quantum, Volume 5 (2021), p. 572 | DOI:10.22331/q-2021-11-08-572
  • Chao Zhang; Heiko Rieger The Effect of Disorder on the Phase Diagrams of Hard-Core Lattice Bosons With Cavity-Mediated Long-Range and Nearest-Neighbor Interactions, Frontiers in Physics, Volume 7 (2020) | DOI:10.3389/fphy.2019.00236
  • Johann Gan; Kaden R. A. Hazzard Numerical linked cluster expansions for inhomogeneous systems, Physical Review A, Volume 102 (2020) no. 1 | DOI:10.1103/physreva.102.013318
  • Carlos L. Benavides-Riveros; Jakob Wolff; Miguel A. L. Marques; Christian Schilling Reduced Density Matrix Functional Theory for Bosons, Physical Review Letters, Volume 124 (2020) no. 18 | DOI:10.1103/physrevlett.124.180603
  • Jian-Ping Lv; Jian-Sheng Wang Bosonic Haldane insulator in the presence of local disorder: A quantum Monte Carlo study, EPL (Europhysics Letters), Volume 123 (2018) no. 1, p. 10004 | DOI:10.1209/0295-5075/123/10004
  • Dario Hügel; Hugo U R Strand; Lode Pollet Self-energy functional theory with symmetry breaking for disordered lattice bosons, Quantum Science and Technology, Volume 3 (2018) no. 3, p. 034006 | DOI:10.1088/2058-9565/aabff6
  • Andreas Geißler; Walter Hofstetter Infinite occupation number basis of bosons: Solving a numerical challenge, Physical Review B, Volume 95 (2017) no. 22 | DOI:10.1103/physrevb.95.224516
  • Carolyn Meldgin; Ushnish Ray; Philip Russ; David Chen; David M. Ceperley; Brian DeMarco Probing the Bose glass–superfluid transition using quantum quenches of disorder, Nature Physics, Volume 12 (2016) no. 7, p. 646 | DOI:10.1038/nphys3695
  • M Gerster; M Rizzi; F Tschirsich; P Silvi; R Fazio; S Montangero Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model, New Journal of Physics, Volume 18 (2016) no. 1, p. 015015 | DOI:10.1088/1367-2630/18/1/015015
  • Andrew M. Goldsborough; Rudolf A. Römer Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model, EPL (Europhysics Letters), Volume 111 (2015) no. 2, p. 26004 | DOI:10.1209/0295-5075/111/26004
  • C. Zhang; A. Safavi-Naini; B. Capogrosso-Sansone Equilibrium phases of two-dimensional bosons in quasiperiodic lattices, Physical Review A, Volume 91 (2015) no. 3 | DOI:10.1103/physreva.91.031604
  • Shinya Yasuda; Hidemaro Suwa; Synge Todo Stochastic approximation of dynamical exponent at quantum critical point, Physical Review B, Volume 92 (2015) no. 10 | DOI:10.1103/physrevb.92.104411
  • Julia Stasińska; Mateusz Łącki; Omjyoti Dutta; Jakub Zakrzewski; Maciej Lewenstein Bose-Hubbard model with random impurities: Multiband and nonlinear hopping effects, Physical Review A, Volume 90 (2014) no. 6 | DOI:10.1103/physreva.90.063634
  • Zoran Ristivojevic; Aleksandra Petković; Pierre Le Doussal; Thierry Giamarchi Superfluid/Bose-glass transition in one dimension, Physical Review B, Volume 90 (2014) no. 12 | DOI:10.1103/physrevb.90.125144
  • C. Creatore; R. Fazio; J. Keeling; H. E. Türeci Quench dynamics of a disordered array of dissipative coupled cavities, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2169, p. 20140328 | DOI:10.1098/rspa.2014.0328

Cité par 24 documents. Sources : Crossref

Commentaires - Politique