[Introduction au groupe de renormalisation pour fort désordre et ses consequences pour la transition superfluide–isolant]
Cette brève revue introduit la méthode et lʼapplication du groupe de renormalisation dans lʼespace réel à des systèmes quantiques fortement désordonnés. Lʼaccent est mis sur les récentes applications du groupe de renormalisation à désordre fort à la physique des systèmes de bosons désordonnés et à la transition superfluide–isolant en une dimension. Le fait quʼil y ait aussi une théorie bien comprise pour un désordre faible pour ce problème nous permet dʼillustrer quels aspects de la physique sont modifiés lorsque le désordre est fort. En particulier, lʼanalyse RG du désordre fort suggère que les transitions à faible et fort désordres appartiennent à des classes distinctes dʼuniversalité, mais cette question reste débattue, et nʼest pas complètement résolue à lʼheure actuelle. Dʼautres applications du groupe de renormalisation à fort désordre à des systèmes de Bose de dimension plus élevées et à des bosons couplés à de la dissipation sont aussi brièvement évoqués.
This brief review introduces the method and application of real-space renormalization group to strongly disordered quantum systems. The focus is on recent applications of the strong disorder renormalization group to the physics of disordered-boson systems and the superfluid–insulator transition in one dimension. The fact that there is also a well-understood weak disorder theory for this problem allows us to illustrate what aspects of the physics change at strong disorder. In particular, the strong disorder RG analysis suggests that the transitions at weak disorder and strong disorder belong to distinct universality classes, but this question remains under debate and is not fully resolved to date. Further applications of the strong disorder renormalization group to higher-dimensional Bose systems and to bosons coupled to dissipation are also briefly reviewed.
Mots-clés : Transition superfluide–isolant, Désordre fort, Groupe de renormalisation, Hasard, Bosons
Gil Refael 1 ; Ehud Altman 2, 3
@article{CRPHYS_2013__14_8_725_0, author = {Gil Refael and Ehud Altman}, title = {Strong disorder renormalization group primer and the superfluid{\textendash}insulator transition}, journal = {Comptes Rendus. Physique}, pages = {725--739}, publisher = {Elsevier}, volume = {14}, number = {8}, year = {2013}, doi = {10.1016/j.crhy.2013.09.005}, language = {en}, }
Gil Refael; Ehud Altman. Strong disorder renormalization group primer and the superfluid–insulator transition. Comptes Rendus. Physique, Disordered systems / Systèmes désordonnés, Volume 14 (2013) no. 8, pp. 725-739. doi : 10.1016/j.crhy.2013.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.005/
[1] Phys. Rev. Lett., 43 (1979), p. 1434
[2] Phys. Rev. B, 22 (1980), p. 1305
[3] Phys. Rev. Lett., 48 (1982), p. 344
[4] Phys. Rev. Lett., 69 (1992), p. 534
[5] Phys. Rev. B, 50 (1994), p. 3799
[6] Phys. Rev. B (1995) | DOI
[7] Phys. Rev. B, 61 (2000), p. 1160
[8] Phys. Rev. Lett., 80 (1998), p. 3539
[9] Phys. Rev. Lett., 84 (2000), p. 3434
[10] Phys. Rev. Lett., 93 (2004), p. 1
[11] Phys. Rev. Lett., 110 (2013), p. 067204
[12] Phys. Rep., 412 (2005), p. 277
[13] Europhys. Lett., 1287 (1987)
[14] Phys. Rev. B, 37 (1988)
[15] Phys. Rev. Lett., 93 (2004), p. 150402
[16] Phys. Rev. B, 81 (2010), p. 174528
[17] Zh. Eksp. Teor. Fiz., 62 (1972), p. 725
[18] Phys. Rev. B, 23 (1981), p. 5846
[19] Phys. Rev. Lett., 23 (1969), p. 17
[20] Nature, 453 (2008), p. 891
[21] Phys. Rev. Lett., 95 (2005), p. 70401
[22] Phys. Rev. A, 76 (2007)
[23] Phys. Rev. Lett., 92 (2004), p. 076802
[24] Phys. Rev. B, 85 (2012), p. 024531
[25] Phys. Rev. Lett., 49 (1982), p. 337
[26] Phys. Rev. Lett., 101 (2008), p. 170407
[27] arXiv
, 2013 |[28] arXiv
, 2013 |[29] Phys. Rev. Lett., 95 (2005), p. 055701
[30] Phys. Rev. Lett., 109 (2012), p. 265303
[31] arXiv
, 2013 (ArXiv e-prints) |[32] arXiv
, 2013 (ArXiv e-prints) |[33] Phys. Rev. Lett., 99 (2007), p. 230601
[34] Phys. Rev. B, 77 (2008), p. 180501
[35] Phys. Rev. Lett., 99 (2007), p. 147202
[36] J. Stat. Mech. Theory Exp., 9 (2012), p. 16
[37] Phys. Rev. B, 65 (2002), p. 064206
[38] Phys. Rev. B, 85 (2012), p. 094202
[39] Physica A, 201 (1993), p. 593
[40] arXiv
, 2013 (ArXiv e-prints) |[41] arXiv
, 2013 (ArXiv e-prints) |- Projected entangled pair states with flexible geometry, Physical Review Research, Volume 7 (2025) no. 1 | DOI:10.1103/physrevresearch.7.l012002
- Infinite-randomness criticality in monitored quantum dynamics with static disorder, Physical Review B, Volume 107 (2023) no. 22 | DOI:10.1103/physrevb.107.l220204
- Subdiffusive spin transport in disordered classical Heisenberg chains, Physical Review B, Volume 108 (2023) no. 9 | DOI:10.1103/physrevb.108.094204
- Boundary theories of critical matchgate tensor networks, Journal of High Energy Physics, Volume 2022 (2022) no. 4 | DOI:10.1007/jhep04(2022)111
- Renormalization group analysis of near-field induced dephasing of optical spin waves in an atomic medium, New Journal of Physics, Volume 24 (2022) no. 1, p. 013031 | DOI:10.1088/1367-2630/ac465d
- Renormalization-group-inspired neural networks for computing topological invariants, Physical Review B, Volume 105 (2022) no. 20 | DOI:10.1103/physrevb.105.205139
- Coupled layer construction for synthetic Hall effects in driven systems, Physical Review B, Volume 106 (2022) no. 14 | DOI:10.1103/physrevb.106.144203
- Maximum Refractive Index of an Atomic Medium, Physical Review X, Volume 11 (2021) no. 1 | DOI:10.1103/physrevx.11.011026
- Holographic tensor network models and quantum error correction: a topical review, Quantum Science and Technology, Volume 6 (2021) no. 3, p. 033002 | DOI:10.1088/2058-9565/ac0293
- Strange metal state near quantum superconductor-metal transition in thin films, Annals of Physics, Volume 417 (2020), p. 168138 | DOI:10.1016/j.aop.2020.168138
- Quantum breakdown of superconductivity in low-dimensional materials, Nature Physics, Volume 16 (2020) no. 7, p. 734 | DOI:10.1038/s41567-020-0905-x
- Central charges of aperiodic holographic tensor-network models, Physical Review A, Volume 102 (2020) no. 4 | DOI:10.1103/physreva.102.042407
- Time-dependent real-space renormalization-group approach: application to an adiabatic random quantum Ising model, Journal of Physics A: Mathematical and Theoretical, Volume 52 (2019) no. 4, p. 045004 | DOI:10.1088/1751-8121/aaf489
- Plasmon localization, plasmon relaxation, and thermal transport in one-dimensional conductors, Physical Review B, Volume 100 (2019) no. 11 | DOI:10.1103/physrevb.100.115153
- From eigenstate to Hamiltonian: Prospects for ergodicity and localization, Physical Review B, Volume 100 (2019) no. 13 | DOI:10.1103/physrevb.100.134201
- Kane-Fisher weak link physics in the clean scratched XY model, Physical Review B, Volume 99 (2019) no. 5 | DOI:10.1103/physrevb.99.054519
- Strong disorder RG approach – a short review of recent developments, The European Physical Journal B, Volume 91 (2018) no. 11 | DOI:10.1140/epjb/e2018-90434-8
- Strong disorder renewal approach to DNA denaturation and wetting: typical and large deviation properties of the free energy, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 1, p. 013301 | DOI:10.1088/1742-5468/aa53f8
- Out-of-time-order correlation in marginal many-body localized systems, Physical Review B, Volume 95 (2017) no. 16 | DOI:10.1103/physrevb.95.165136
- Spin-catalyzed hopping conductivity in disordered strongly interacting quantum wires, Physical Review B, Volume 95 (2017) no. 2 | DOI:10.1103/physrevb.95.024201
- Stable unitary integrators for the numerical implementation of continuous unitary transformations, Physical Review B, Volume 96 (2017) no. 11 | DOI:10.1103/physrevb.96.115129
- Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains, Journal of Physics A: Mathematical and Theoretical, Volume 49 (2016) no. 30, p. 305002 | DOI:10.1088/1751-8113/49/30/305002
- Many-body localization: construction of the emergent local conserved operators via block real-space renormalization, Journal of Statistical Mechanics: Theory and Experiment, Volume 2016 (2016) no. 3, p. 033101 | DOI:10.1088/1742-5468/2016/03/033101
- Many-body-localization transition: strong multifractality spectrum for matrix elements of local operators, Journal of Statistical Mechanics: Theory and Experiment, Volume 2016 (2016) no. 7, p. 073301 | DOI:10.1088/1742-5468/2016/07/073301
- Entanglement holographic mapping of many-body localized system by spectrum bifurcation renormalization group, Physical Review B, Volume 93 (2016) no. 10 | DOI:10.1103/physrevb.93.104205
- Disordered XYZ spin chain simulations using the spectrum bifurcation renormalization group, Physical Review B, Volume 94 (2016) no. 1 | DOI:10.1103/physrevb.94.014205
- Universal Dynamics and Renormalization in Many-Body-Localized Systems, Annual Review of Condensed Matter Physics, Volume 6 (2015) no. 1, p. 383 | DOI:10.1146/annurev-conmatphys-031214-014701
- Many-body localization transition in random quantum spin chains with long-range interactions, EPL (Europhysics Letters), Volume 111 (2015) no. 2, p. 27003 | DOI:10.1209/0295-5075/111/27003
- Block renormalization for quantum Ising models in dimensiond= 2: applications to the pure and random ferromagnet, and to the spin-glass, Journal of Statistical Mechanics: Theory and Experiment, Volume 2015 (2015) no. 1, p. P01023 | DOI:10.1088/1742-5468/2015/01/p01023
- Superfluid/Bose-glass transition in one dimension, Physical Review B, Volume 90 (2014) no. 12 | DOI:10.1103/physrevb.90.125144
Cité par 30 documents. Sources : Crossref
Commentaires - Politique