Comptes Rendus
Strong disorder renormalization group primer and the superfluid–insulator transition
[Introduction au groupe de renormalisation pour fort désordre et ses consequences pour la transition superfluide–isolant]
Comptes Rendus. Physique, Disordered systems / Systèmes désordonnés, Volume 14 (2013) no. 8, pp. 725-739.

Cette brève revue introduit la méthode et lʼapplication du groupe de renormalisation dans lʼespace réel à des systèmes quantiques fortement désordonnés. Lʼaccent est mis sur les récentes applications du groupe de renormalisation à désordre fort à la physique des systèmes de bosons désordonnés et à la transition superfluide–isolant en une dimension. Le fait quʼil y ait aussi une théorie bien comprise pour un désordre faible pour ce problème nous permet dʼillustrer quels aspects de la physique sont modifiés lorsque le désordre est fort. En particulier, lʼanalyse RG du désordre fort suggère que les transitions à faible et fort désordres appartiennent à des classes distinctes dʼuniversalité, mais cette question reste débattue, et nʼest pas complètement résolue à lʼheure actuelle. Dʼautres applications du groupe de renormalisation à fort désordre à des systèmes de Bose de dimension plus élevées et à des bosons couplés à de la dissipation sont aussi brièvement évoqués.

This brief review introduces the method and application of real-space renormalization group to strongly disordered quantum systems. The focus is on recent applications of the strong disorder renormalization group to the physics of disordered-boson systems and the superfluid–insulator transition in one dimension. The fact that there is also a well-understood weak disorder theory for this problem allows us to illustrate what aspects of the physics change at strong disorder. In particular, the strong disorder RG analysis suggests that the transitions at weak disorder and strong disorder belong to distinct universality classes, but this question remains under debate and is not fully resolved to date. Further applications of the strong disorder renormalization group to higher-dimensional Bose systems and to bosons coupled to dissipation are also briefly reviewed.

Publié le :
DOI : 10.1016/j.crhy.2013.09.005
Keywords: Superfluid–insulator transition, Strong disorder, Renormalization group, Randomness, Bosons
Mots-clés : Transition superfluide–isolant, Désordre fort, Groupe de renormalisation, Hasard, Bosons

Gil Refael 1 ; Ehud Altman 2, 3

1 Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
2 Department of Physics, University of California, Berkeley, CA 94720, USA
3 Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
@article{CRPHYS_2013__14_8_725_0,
     author = {Gil Refael and Ehud Altman},
     title = {Strong disorder renormalization group primer and the superfluid{\textendash}insulator transition},
     journal = {Comptes Rendus. Physique},
     pages = {725--739},
     publisher = {Elsevier},
     volume = {14},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crhy.2013.09.005},
     language = {en},
}
TY  - JOUR
AU  - Gil Refael
AU  - Ehud Altman
TI  - Strong disorder renormalization group primer and the superfluid–insulator transition
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 725
EP  - 739
VL  - 14
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.005
LA  - en
ID  - CRPHYS_2013__14_8_725_0
ER  - 
%0 Journal Article
%A Gil Refael
%A Ehud Altman
%T Strong disorder renormalization group primer and the superfluid–insulator transition
%J Comptes Rendus. Physique
%D 2013
%P 725-739
%V 14
%N 8
%I Elsevier
%R 10.1016/j.crhy.2013.09.005
%G en
%F CRPHYS_2013__14_8_725_0
Gil Refael; Ehud Altman. Strong disorder renormalization group primer and the superfluid–insulator transition. Comptes Rendus. Physique, Disordered systems / Systèmes désordonnés, Volume 14 (2013) no. 8, pp. 725-739. doi : 10.1016/j.crhy.2013.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.005/

[1] S.-k. Ma; C. Dasgupta; C.-k. Hu Phys. Rev. Lett., 43 (1979), p. 1434

[2] C. Dasgupta; S.K. Ma Phys. Rev. B, 22 (1980), p. 1305

[3] R.N. Bhatt; P.A. Lee Phys. Rev. Lett., 48 (1982), p. 344

[4] D. Fisher Phys. Rev. Lett., 69 (1992), p. 534

[5] D.S. Fisher Phys. Rev. B, 50 (1994), p. 3799

[6] D. Fisher Phys. Rev. B (1995) | DOI

[7] O. Motrunich; S.-C. Mau; D.A. Huse; D.S. Fisher Phys. Rev. B, 61 (2000), p. 1160

[8] D. Fisher; P. Le Doussal; C. Monthus Phys. Rev. Lett., 80 (1998), p. 3539

[9] K. Damle; O. Motrunich; D. Huse Phys. Rev. Lett., 84 (2000), p. 3434

[10] G. Refael; J. Moore Phys. Rev. Lett., 93 (2004), p. 1

[11] R. Vosk; E. Altman Phys. Rev. Lett., 110 (2013), p. 067204

[12] F. Igloi; C. Monthus Phys. Rep., 412 (2005), p. 277

[13] T. Giamarchi; H. Schulz Europhys. Lett., 1287 (1987)

[14] T. Giamarchi; H. Schulz Phys. Rev. B, 37 (1988)

[15] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. Lett., 93 (2004), p. 150402

[16] E. Altman; Y. Kafri; A. Polkovnikov; G. Refael Phys. Rev. B, 81 (2010), p. 174528

[17] L.N. Bulasevskii; A. Zvarykina; R.B. Karimuv; R.B. Lyubovskii; I.F. Shchengloev Zh. Eksp. Teor. Fiz., 62 (1972), p. 725

[18] L.C. Tippie; W.G. Clark Phys. Rev. B, 23 (1981), p. 5846

[19] R.B. Griffiths Phys. Rev. Lett., 23 (1969), p. 17

[20] J. Billy; V. Josse; Z. Zuo; A. Bernard; B. Hambrecht; P. Lugan; D. Clément; L. Sanchez-Palencia; P. Bouyer; A. Aspect Nature, 453 (2008), p. 891

[21] J. Lye; L. Fallani; M. Modugno; D. Wiersma; C. Fort; M. Inguscio Phys. Rev. Lett., 95 (2005), p. 70401

[22] P. Krüger; L. Andersson; S. Wildermuth; S. Hofferberth; E. Haller; S. Aigner; S. Groth; I. Bar-Joseph; J. Schmiedmayer Phys. Rev. A, 76 (2007)

[23] D.-W. Wang; M.D. Lukin; E. Demler Phys. Rev. Lett., 92 (2004), p. 076802

[24] R. Vosk; E. Altman Phys. Rev. B, 85 (2012), p. 024531

[25] T.A.L. Ziman Phys. Rev. Lett., 49 (1982), p. 337

[26] V. Gurarie; G. Refael; J. Chalker Phys. Rev. Lett., 101 (2008), p. 170407

[27] L. Pollet; N.V. Prokof ʼev; B.V. Svistunov, 2013 | arXiv

[28] L. Pollet, 2013 | arXiv

[29] K.G. Balabanyan; N. Prokof ʼev; B. Svistunov Phys. Rev. Lett., 95 (2005), p. 055701

[30] F. Hrahsheh; T. Vojta Phys. Rev. Lett., 109 (2012), p. 265303

[31] S. Iyer; D. Pekker; G. Refael, 2013 (ArXiv e-prints) | arXiv

[32] S. Pielawa; E. Altman, 2013 (ArXiv e-prints) | arXiv

[33] J. Hoyos; C. Kotabage; T. Vojta Phys. Rev. Lett., 99 (2007), p. 230601

[34] A. Del Maestro; B. Rosenow; N. Shah; S. Sachdev Phys. Rev. B, 77 (2008), p. 180501

[35] Y.-C. Lin; F. Iglói; H. Rieger Phys. Rev. Lett., 99 (2007), p. 147202

[36] C. Monthus; T. Garel J. Stat. Mech. Theory Exp., 9 (2012), p. 16

[37] O. Motrunich; K. Damle; D.A. Huse Phys. Rev. B, 65 (2002), p. 064206

[38] S. Iyer; D. Pekker; G. Refael Phys. Rev. B, 85 (2012), p. 094202

[39] A.P. Gottlob; M. Hasenbusch Physica A, 201 (1993), p. 593

[40] D. Pekker; G. Refael; E. Altman; E. Demler; V. Oganesyan, 2013 (ArXiv e-prints) | arXiv

[41] R. Vosk; E. Altman, 2013 (ArXiv e-prints) | arXiv

  • Siddhartha Patra; Sukhbinder Singh; Román Orús Projected entangled pair states with flexible geometry, Physical Review Research, Volume 7 (2025) no. 1 | DOI:10.1103/physrevresearch.7.l012002
  • Aidan Zabalo; Justin H. Wilson; Michael J. Gullans; Romain Vasseur; Sarang Gopalakrishnan; David A. Huse; J. H. Pixley Infinite-randomness criticality in monitored quantum dynamics with static disorder, Physical Review B, Volume 107 (2023) no. 22 | DOI:10.1103/physrevb.107.l220204
  • Adam J. McRoberts; Federico Balducci; Roderich Moessner; Antonello Scardicchio Subdiffusive spin transport in disordered classical Heisenberg chains, Physical Review B, Volume 108 (2023) no. 9 | DOI:10.1103/physrevb.108.094204
  • A. Jahn; M. Gluza; C. Verhoeven; S. Singh; J. Eisert Boundary theories of critical matchgate tensor networks, Journal of High Energy Physics, Volume 2022 (2022) no. 4 | DOI:10.1007/jhep04(2022)111
  • S Grava; Y He; S Wu; D E Chang Renormalization group analysis of near-field induced dephasing of optical spin waves in an atomic medium, New Journal of Physics, Volume 24 (2022) no. 1, p. 013031 | DOI:10.1088/1367-2630/ac465d
  • Gilad Margalit; Omri Lesser; T. Pereg-Barnea; Yuval Oreg Renormalization-group-inspired neural networks for computing topological invariants, Physical Review B, Volume 105 (2022) no. 20 | DOI:10.1103/physrevb.105.205139
  • David M. Long; Philip J. D. Crowley; Anushya Chandran Coupled layer construction for synthetic Hall effects in driven systems, Physical Review B, Volume 106 (2022) no. 14 | DOI:10.1103/physrevb.106.144203
  • Francesco Andreoli; Michael J. Gullans; Alexander A. High; Antoine Browaeys; Darrick E. Chang Maximum Refractive Index of an Atomic Medium, Physical Review X, Volume 11 (2021) no. 1 | DOI:10.1103/physrevx.11.011026
  • Alexander Jahn; Jens Eisert Holographic tensor network models and quantum error correction: a topical review, Quantum Science and Technology, Volume 6 (2021) no. 3, p. 033002 | DOI:10.1088/2058-9565/ac0293
  • Konstantin S. Tikhonov; Mikhail V. Feigel’man Strange metal state near quantum superconductor-metal transition in thin films, Annals of Physics, Volume 417 (2020), p. 168138 | DOI:10.1016/j.aop.2020.168138
  • Benjamin Sacépé; Mikhail Feigel’man; Teunis M. Klapwijk Quantum breakdown of superconductivity in low-dimensional materials, Nature Physics, Volume 16 (2020) no. 7, p. 734 | DOI:10.1038/s41567-020-0905-x
  • Alexander Jahn; Zoltán Zimborás; Jens Eisert Central charges of aperiodic holographic tensor-network models, Physical Review A, Volume 102 (2020) no. 4 | DOI:10.1103/physreva.102.042407
  • Peter Mason; Alexandre M Zagoskin; Joseph J Betouras Time-dependent real-space renormalization-group approach: application to an adiabatic random quantum Ising model, Journal of Physics A: Mathematical and Theoretical, Volume 52 (2019) no. 4, p. 045004 | DOI:10.1088/1751-8121/aaf489
  • M. Bard; I. V. Protopopov; A. D. Mirlin Plasmon localization, plasmon relaxation, and thermal transport in one-dimensional conductors, Physical Review B, Volume 100 (2019) no. 11 | DOI:10.1103/physrevb.100.115153
  • Maxime Dupont; Nicolas Macé; Nicolas Laflorencie From eigenstate to Hamiltonian: Prospects for ergodicity and localization, Physical Review B, Volume 100 (2019) no. 13 | DOI:10.1103/physrevb.100.134201
  • G. Lemarié; I. Maccari; C. Castellani Kane-Fisher weak link physics in the clean scratched XY model, Physical Review B, Volume 99 (2019) no. 5 | DOI:10.1103/physrevb.99.054519
  • Ferenc Iglói; Cécile Monthus Strong disorder RG approach – a short review of recent developments, The European Physical Journal B, Volume 91 (2018) no. 11 | DOI:10.1140/epjb/e2018-90434-8
  • Cécile Monthus Strong disorder renewal approach to DNA denaturation and wetting: typical and large deviation properties of the free energy, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 1, p. 013301 | DOI:10.1088/1742-5468/aa53f8
  • Kevin Slagle; Zhen Bi; Yi-Zhuang You; Cenke Xu Out-of-time-order correlation in marginal many-body localized systems, Physical Review B, Volume 95 (2017) no. 16 | DOI:10.1103/physrevb.95.165136
  • S. A. Parameswaran; S. Gopalakrishnan Spin-catalyzed hopping conductivity in disordered strongly interacting quantum wires, Physical Review B, Volume 95 (2017) no. 2 | DOI:10.1103/physrevb.95.024201
  • Samuel Savitz; Gil Refael Stable unitary integrators for the numerical implementation of continuous unitary transformations, Physical Review B, Volume 96 (2017) no. 11 | DOI:10.1103/physrevb.96.115129
  • Cécile Monthus Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains, Journal of Physics A: Mathematical and Theoretical, Volume 49 (2016) no. 30, p. 305002 | DOI:10.1088/1751-8113/49/30/305002
  • Cécile Monthus Many-body localization: construction of the emergent local conserved operators via block real-space renormalization, Journal of Statistical Mechanics: Theory and Experiment, Volume 2016 (2016) no. 3, p. 033101 | DOI:10.1088/1742-5468/2016/03/033101
  • Cécile Monthus Many-body-localization transition: strong multifractality spectrum for matrix elements of local operators, Journal of Statistical Mechanics: Theory and Experiment, Volume 2016 (2016) no. 7, p. 073301 | DOI:10.1088/1742-5468/2016/07/073301
  • Yi-Zhuang You; Xiao-Liang Qi; Cenke Xu Entanglement holographic mapping of many-body localized system by spectrum bifurcation renormalization group, Physical Review B, Volume 93 (2016) no. 10 | DOI:10.1103/physrevb.93.104205
  • Kevin Slagle; Yi-Zhuang You; Cenke Xu Disordered XYZ spin chain simulations using the spectrum bifurcation renormalization group, Physical Review B, Volume 94 (2016) no. 1 | DOI:10.1103/physrevb.94.014205
  • Ehud Altman; Ronen Vosk Universal Dynamics and Renormalization in Many-Body-Localized Systems, Annual Review of Condensed Matter Physics, Volume 6 (2015) no. 1, p. 383 | DOI:10.1146/annurev-conmatphys-031214-014701
  • N. Moure; S. Haas; S. Kettemann Many-body localization transition in random quantum spin chains with long-range interactions, EPL (Europhysics Letters), Volume 111 (2015) no. 2, p. 27003 | DOI:10.1209/0295-5075/111/27003
  • Cécile Monthus Block renormalization for quantum Ising models in dimensiond= 2: applications to the pure and random ferromagnet, and to the spin-glass, Journal of Statistical Mechanics: Theory and Experiment, Volume 2015 (2015) no. 1, p. P01023 | DOI:10.1088/1742-5468/2015/01/p01023
  • Zoran Ristivojevic; Aleksandra Petković; Pierre Le Doussal; Thierry Giamarchi Superfluid/Bose-glass transition in one dimension, Physical Review B, Volume 90 (2014) no. 12 | DOI:10.1103/physrevb.90.125144

Cité par 30 documents. Sources : Crossref

Commentaires - Politique