[Physique des bosons sales avec des isolants magnétiques]
Nous passons en revue des efforts récents, à la fois théoriques et expérimentaux, visant à étudier la physique de bosons désordonnés interagissant (dénommés bosons sales) dans le contexte du magnétisme quantique. La physique des bosons sales relève dʼune large varieté de systèmes de matière condensée, incluant lʼhélium dans les milieux poreux, les supraconducteurs granulaires et les atomes ultra-froids dans les potentiels optiques désordonnés, pour ne citer que ceux-là. Néanmoins, la compréhension de la transition dʼune phase de verre de Bose localisée vers un condensat ordonné, superfluide, représente encore un problème ouvert fondamentalement. Reste à construire aussi une description quantitative des phases hautement inhomogènes et fortement corrélées connectées par la transition. Nous discutons comment des isolants magnétiques désordonnés placés dans un champ magnétique fort peuvent fournir une réalisation bien contrôlée de cette transition. La combinaison de simulations numériques et dʼexpériences sur des matériaux réels peut faire la lumière sur certaines propriétés fondamentales du comportement critique, telles que lʼajustement de la température critique à la condensation près du point critique quantique.
We review recent theoretical and experimental efforts aimed at the investigation of the physics of interacting disordered bosons (so-called dirty bosons) in the context of quantum magnetism. The physics of dirty bosons is relevant to a wide variety of condensed matter systems, encompassing helium in porous media, granular superconductors, and ultracold atoms in disordered optical potentials, to cite a few. Nevertheless, the understanding of the transition from a localized, Bose-glass phase to an ordered, superfluid condensate phase still represents a fundamentally open problem. Still to be constructed is also a quantitative description of the highly inhomogeneous and strongly correlated phases connected by the transition. We discuss how disordered magnetic insulators in a strong magnetic field can provide a well-controlled realization of the above transition. Combining numerical simulations with experiments on real materials can shed light on some fundamental properties of the critical behavior, such as the scaling of the critical temperature to condensation close to the quantum critical point.
Mot clés : Magnétisme quantique, Effets de désordre, Verre de Bose
Andrey Zheludev 1 ; Tommaso Roscilde 2
@article{CRPHYS_2013__14_8_740_0, author = {Andrey Zheludev and Tommaso Roscilde}, title = {Dirty-boson physics with magnetic insulators}, journal = {Comptes Rendus. Physique}, pages = {740--756}, publisher = {Elsevier}, volume = {14}, number = {8}, year = {2013}, doi = {10.1016/j.crhy.2013.10.001}, language = {en}, }
Andrey Zheludev; Tommaso Roscilde. Dirty-boson physics with magnetic insulators. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 740-756. doi : 10.1016/j.crhy.2013.10.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.001/
[1] Quantum Phase Transitions, Cambridge University Press, 2011
[2] Introduction to Frustrated Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer, 2011
[3] Low-temperature magnetism of quinolinium (TCNQ)2, a random-exchange Heisenberg antiferromagnetic chain. I. Static properties, Phys. Rev. B, Volume 23 ( Jun. 1981 ), pp. 5846-5853
[4] Random antiferromagnetic quantum spin chains, Phys. Rev. B, Volume 50 ( Aug. 1994 ), pp. 3799-3821
[5] Random-exchange quantum Heisenberg chains, Phys. Rev. B, Volume 52 ( Dec. 1995 ), pp. 15930-15942
[6] Impurities in Heisenberg antiferromagnetic chains: Consequences for neutron scattering and knight shift, Phys. Rev. Lett., Volume 75 ( Jul. 1995 ), pp. 934-937
[7] Sov. Phys. JETP, 60 (1984), p. 781
[8] Phys. Rev. B, 59 (1999), p. 11398
[9] Nat. Phys., 4 (2008), p. 198
[10] Phys. Rev. B, 37 (1988), p. 325
[11] Phys. Rev. B, 40 (1989), pp. 546-570
[12] Crystal-structure, magnetic-susceptibility, and epr studies of bis(piperidinium)tetrabromocuprate(ii): A novel monomer system showing spin diffusion, Phys. Rev. B, Volume 41 ( Jan. 1990 ), pp. 1657-1663
[13] Frustration-induced two-dimensional quantum disordered phase in piperazinium hexachlorodicuprate, Phys. Rev. B, Volume 64 ( Sep. 2001 ) no. 14, p. 144405
[14] J. Phys. Soc. Jpn., 66 (1997), p. 564
[15] Crystal structure and magnetic properties of the quasi-one-dimensional quantum spin system Cu2Cl4⋅H8C4SO2, J. Phys. Soc. Jpn., Volume 72 (2003) no. 3, pp. 694-697
[16] AIP Conf. Proc., 1297 (2010), p. 135
[17] Experimental Neutron Scattering, Oxford University Press, 2009
[18] Netsu Sokutei, 37 (2010), p. 26
[19] Distribution of nmr relaxations in a random Heisenberg chain, Phys. Rev. Lett., Volume 106 ( Apr. 2011 ), p. 137202
[20] Ordering in weakly coupled random singlet spin chains, Phys. Rev. B, Volume 86 ( Nov. 2012 ), p. 180407
[21] Switching of the gapped singlet spin-liquid state to an antiferromagnetically ordered state in Sr(Cu1 − xZnx)2O3, Phys. Rev. B, Volume 55 ( Apr. 1997 ), p. R8658-R8661
[22] Impurity-induced magnetic order in low-dimensional spin-gapped materials, Phys. Rev. Lett., Volume 103 ( Jul. 2009 ), p. 047201
[23] Spin-vacancy-induced long-range order in a new haldane-gap antiferromagnet, Phys. Rev. Lett., Volume 83 ( Jul. 1999 ), pp. 632-635
[24] Excitations in a quantum spin liquid with random bonds, Phys. Rev. B, Volume 86 ( Dec. 2012 ), p. 214408
[25] Bond randomness induced magnon decoherence in a spin- ladder compound, Phys. Rev. B, Volume 87 ( Jan. 2013 ), p. 020408
[26] Magnon heat transport in doped La2CuO4, Phys. Rev. Lett., Volume 90 ( May 2003 ), p. 197002
[27] Bond disorder and breakdown of ballistic heat transport in the spin- antiferromagnetic Heisenberg chain as seen in Ca-doped SrCuO2, Phys. Rev. B, Volume 84 ( Dec. 2011 ), p. 214419
[28] Z. Phys., 61 (1930), p. 206
[29] Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., Volume 58 ( Dec. 1940 ), pp. 1098-1113
[30] Novel Superfluids, Oxford University Press, 2013 (Chapter 4)
[31] arXiv
, 2009 |[32] Magnon Bose–Einstein condensation and spin superfluidity, J. Phys. Condens. Matter, Volume 22 (2010) no. 16, p. 164210
[33] Prog. Theor. Phys., 16 (1956), p. 569
[34] Functional Integrals and Collective Excitations, Cambridge University Press, 1987
[35] J. Phys. Soc. Jpn., 28 (1970), p. 1413
[36] Eur. Phys. J. B, 6 (1998), p. 201
[37] Physica, 51 (1971), p. 186
[38] Phys. Rev. Lett., 65 (1990), p. 2477
[39] Phys. Rev. B, 43 (1991), p. 3215
[40] Phys. Rev. Lett., 72 (1994), p. 912
[41] Phys. Rev. B, 69 (2004), p. 054414
[42] Critical properties of gapped spin-chains and ladders in a magnetic field, Phys. Rev. B, Volume 55 ( Mar. 1997 ) no. 9, pp. 5816-5826
[43] Phys. Rev. Lett., 71 (1993), p. 1633
[44] Rep. Prog. Phys., 56 (1993), p. 1469
[45] Field-induced quantum-disordered phases in weakly coupled dimer systems with site dilution, Phys. Rev. B, Volume 74 ( Oct. 2006 ), p. 144418
[46] Nature, 489 (2012), p. 379
[47] Basic Notions of Condensed Matter, Benjamin, Menlo Park, 1984
[48] Europhys. Lett., 3 (1987), p. 1287
[49] Phase transition of interacting disordered bosons in one dimension, Phys. Rev. Lett., Volume 109 ( Jul. 2012 ), p. 026402
[50] Supercurrent states in one-dimensional finite-size rings, Phys. Rev. B, Volume 53 ( May 1996 ), pp. 13091-13105
[51] Insulating phases and superfluid–insulator transition of disordered boson chains, Phys. Rev. Lett., Volume 100 ( May 2008 ), p. 170402
[52] Superfluid–insulator transition of disordered bosons in one dimension, Phys. Rev. B, Volume 81 ( May 2010 ), p. 174528
[53] Phys. Rev. B, 87 (2013), p. 144203
[54] Competition of random and periodic potentials in interacting fermionic systems and classical equivalents: the Mott glass, Phys. Rev. B, Volume 64 ( Dec. 2001 ), p. 245119
[55] Superfluid–insulator transition in commensurate disordered bosonic systems: Large-scale worm algorithm simulations, Phys. Rev. Lett., Volume 92 ( Jan. 2004 ), p. 015703
[56] Superfluid–insulator transition in a commensurate one-dimensional bosonic system with off-diagonal disorder, Phys. Rev. Lett., Volume 95 ( Jul. 2005 ), p. 055701
[57] Phase transition in a system of one-dimensional bosons with strong disorder, Phys. Rev. Lett., Volume 93 ( Oct. 2004 ), p. 150402
[58] Disordered bosons in one dimension: From weak- to strong-randomness criticality, Phys. Rev. Lett., Volume 109 ( Dec. 2012 ), p. 265303
[59] Dimensionality expansion for the dirty-boson problem, Phys. Rev. B, Volume 40 ( Jul. 1989 ), pp. 813-816
[60] Particle–hole symmetry and the dirty boson problem, Phys. Rev. B, Volume 77 ( Jun. 2008 ), p. 214516
[61] Finite-size scaling and correlation lengths for disordered systems, Phys. Rev. Lett., Volume 57 ( Dec. 1986 ), pp. 2999-3002
[62] Quantum phase transitions of hard-core bosons in background potentials, Phys. Rev. Lett., Volume 97 ( Sep. 2006 ), p. 115703
[63] Quantum critical dynamics simulation of dirty boson systems, Phys. Rev. Lett., Volume 108 ( Jan. 2012 ), p. 055701
[64] Critical dynamics of the dirty boson problem: Revisiting the equality , Phys. Rev. Lett., Volume 98 ( Jun. 2007 ), p. 245701
[65] Superfluid–insulator transition in the disordered two-dimensional Bose–Hubbard model, Phys. Rev. B, Volume 84 ( Sep. 2011 ), p. 094507
[66] Phase diagram of the commensurate two-dimensional disordered Bose–Hubbard model, Phys. Rev. Lett., Volume 107 ( Oct. 2011 ), p. 185301
[67] Bose-glass to superfluid transition in the three-dimensional Bose–Hubbard model, Phys. Rev. B, Volume 73 ( May 2006 ), p. 174523
[68] Quantum critical scaling at a Bose-glass/superfluid transition: Theory and experiment for a model quantum magnet, Phys. Rev. B, Volume 86 ( Oct. 2012 ), p. 134421
[69] Universal phase diagram of disordered bosons from a doped quantum magnet, Europhys. Lett., Volume 89 (2010), p. 10009
[70] Int. J. Theor. Phys., 21 (1982), p. 467
[71] Onset of superfluidity in 4He films adsorbed on disordered substrates, Phys. Rev. B, Volume 55 ( May 1997 ), pp. 12620-12634
[72] Nat. Phys., 7 (2011), p. 239
[73] Adv. At. Mol. Opt. Phys., 56 (2008), p. 119
[74] Nat. Phys., 6 (2010), p. 87
[75] Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys., Volume 73 (2010) no. 10, p. 102401
[76] Cold atoms in the presence of disorder, J. Phys. A, Math. Theor., Volume 45 (2012) no. 14, p. 143001
[77] Crystals for neutron scattering studies of quantum magnetism, Philos. Mag., Volume 92 (2012) no. 19–21, pp. 2629-2647
[78] Dynamics of an , one-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett., Volume 32 ( Jan. 1974 ), pp. 170-173
[79] Synthesis and structural characterization of 2Dioxane⋅H2O⋅CuCl2: Metal–organic compound with Heisenberg antiferromagnetic chains, Phys. Rev. B, Volume 80 ( Oct. 2009 ), p. 132404
[80] Phys. Rev. Lett., 86 (2001), p. 5168
[81] Dynamics of composite haldane spin chains in IPA–CuCl3, Phys. Rev. Lett., Volume 96 ( Feb. 2006 ) no. 4, p. 047210
[82] Phys. Rev. Lett., 100 (2008), p. 25701
[83] Quantum criticality in an organic magnet, Phys. Rev. Lett., Volume 96 ( Jun. 2006 ) no. 25, p. 257203
[84] J. Phys. Condens. Matter, 11 (1999), p. 265
[85] Specific heat study of the field-induced magnetic ordering in the spin-gap system TlCuCl3, Phys. Rev. B, Volume 63 ( Mar. 2001 ), p. 134416
[86] Excitations in a four-leg antiferromagnetic Heisenberg spin tube, Phys. Rev. Lett., Volume 100 ( Jan. 2008 ) no. 3, p. 037206
[87] J. Phys. Soc. Jpn., 70 (2001), p. 939
[88] Excitations from a Bose–Einstein condensate of magnons in coupled spin ladders, Phys. Rev. Lett., Volume 98 ( Apr. 2007 ) no. 16, p. 167202
[89] Bose–Einstein condensation of dilute magnons in TlCuCl3, Phys. Rev. Lett., Volume 84 ( Jun. 2000 ), pp. 5868-5871
[90] Triplet excitations in low- spin-gap systems KCuCl3 and TlCuCl3: An inelastic neutron scattering study, Phys. Rev. B, Volume 65 ( Mar. 2002 ), p. 132415
[91] Nature, 423 (2003), p. 62
[92] Spin-resonance modes of the spin-gap magnet TlCuCl3, Phys. Rev. B, Volume 69 ( May 2004 ), p. 184410
[93] Phys. Rev. Lett., 86 (2001), p. 1618
[94] Dynamics of an anisotropic spin dimer system in a strong magnetic field, Phys. Rev. B, Volume 70 ( Jul. 2004 ), p. 020403
[95] Consequences of spin–orbit coupling for the Bose–Einstein condensation of magnons, Europhys. Lett., Volume 68 (2004) no. 2, p. 275
[96] J. Phys. Soc. Jpn., 77 (2008), p. 013701
[97] J. Phys. Soc. Jpn., 67 (1998), p. 3913
[98] Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet, New J. Phys., Volume 9 (2007) no. 2, p. 31
[99] Dynamics of quantum spin liquid and spin solid phases in IPA–CuCl3 under an applied magnetic field studied with neutron scattering, Phys. Rev. B, Volume 76 ( Aug. 2007 ) no. 5, p. 054450
[100] Phys. Rev. B, 63 (2001), p. 144428
[101] Electron spin resonance study of anisotropic interactions in a two-dimensional spin-gap magnet (C4H12N2)(Cu2Cl6), Phys. Rev. B, Volume 85 ( Feb. 2012 ), p. 054415
[102] Quasiparticle breakdown in a quantum spin liquid, Nature, Volume 440 ( March 2006 ) no. 7081, pp. 187-190
[103] Extended universal finite-t renormalization of excitations in a class of one-dimensional quantum magnets, Phys. Rev. Lett., Volume 100 ( Apr. 2008 ) no. 15, p. 157204
[104] Low-temperature dynamics of magnons in a spin-1/2 ladder compound, Phys. Rev. Lett., Volume 106 ( Apr. 2011 ) no. 17, p. 177202
[105] Field-induced magnetic ordering in NiCl2⋅4SC(NH2)2, Phys. Rev. B, Volume 69 ( Jan. 2004 ), p. 020405
[106] Bose–Einstein condensation of nickel spin degrees of freedom in NiCl2-4SC(NH2)2, Phys. Rev. Lett., Volume 96 ( Feb. 2006 ), p. 077204
[107] Magnetic excitations in the spin-1 anisotropic Heisenberg antiferromagnetic chain system NiCl2–4SC(NH2)2, Phys. Rev. Lett., Volume 98 ( Jan. 2007 ), p. 047205
[108] The magnetic susceptibility of paraquat hexabromodicuprate (ii): a comparison of the magnetochemistry of copper(ii) chloride and copper(ii) bromide salts, Inorg. Chem., Volume 25 (1986) no. 11, pp. 1918-1920
[109] The effects of disorder in dimerized quantum magnets in mean field approximations, New J. Phys., Volume 83 ( Jan. 2011 ), p. 020409
[110] Field-induced criticality in a gapped quantum magnet with bond disorder, Phys. Rev. B, Volume 85 ( Mar. 2012 ), p. 100410
[111] Disordered states in IPA–Cu(Cl1 − xBrx)3 induced by bond randomness, Phys. Rev. Lett., Volume 101 ( Aug. 2008 ), p. 077204
[112] Bose-glass state in one-dimensional random antiferromagnets, Phys. Rev. B, Volume 79 ( Mar. 2009 ), p. 092401
[113] Comment on “Transition from Bose glass to a condensate of triplons in Tl1 − xKxCuCl3”, Phys. Rev. B, Volume 83 ( Jun. 2011 ), p. 216401
[114] Reply to “Comment on ‘transition from Bose glass to a condensate of triplons in Tl1 − xKxCuCl3’ ”, Phys. Rev. B, Volume 83 ( Jun. 2011 ), p. 216402
[115] Field-induced Tomonaga–Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions, Phys. Rev. Lett., Volume 105 ( Sep. 2010 ) no. 13, p. 137207
[116] Critical behavior of amorphous magnets, Phys. Rev. B, Volume 12 ( Aug. 1975 ), pp. 1038-1048
[117] Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett., Volume 35 ( Nov. 1975 ), pp. 1399-1401
[118] Random-field-induced destruction of the phase transition of a diluted two-dimensional ising antiferromagnet: Rb2Co0.85Mg0.15F4, Phys. Rev. B, Volume 28 ( Nov. 1983 ), pp. 5192-5198
[119] Temporal phase transition in the three-dimensional random-field Ising model, Phys. Rev. Lett., Volume 54 ( May 1985 ), pp. 2147-2150
[120] Criticality in a disordered quantum antiferromagnet by neutron diffraction | arXiv
[121] arXiv
, 2013 |[122] Controlling Luttinger liquid physics in spin ladders under a magnetic field, Phys. Rev. Lett., Volume 101 ( Sep. 2008 ) no. 13, p. 137207
[123] Structure and magnetic interactions in the solid solution Ba3–xSrxCr2O8, Mat. Res. Bull., Volume 48 (2013), p. 3108
Cité par Sources :
Commentaires - Politique