Comptes Rendus
Quasicrystals / Quasicristaux
Quasicrystals, model sets, and automatic sequences
Comptes Rendus. Physique, Volume 15 (2014) no. 1, pp. 6-11.

We survey mathematical properties of quasicrystals, first from the point of view of harmonic analysis, then from the point of view of morphic and automatic sequences.

Nous proposons un tour dʼhorizon des propriétés mathématiques des quasicristaux, dʼabord du point de vue de lʼanalyse harmonique, ensuite du point de vue des suites morphiques et automatiques.

DOI: 10.1016/j.crhy.2013.09.002
Keywords: Quasicrystals, Model sets, Automatic sequences
Mot clés : Quasicristaux, Ensembles modèles, Suites automatiques

Jean-Paul Allouche 1; Yves Meyer 2

1 CNRS, Institut de mathématiques de Jussieu, Équipe combinatoire et optimisation, Université Pierre-et-Marie-Curie, case 247, 4, place Jussieu, 75252 Paris Cedex 05, France
2 CMLA, Centre de mathématiques et de leurs applications, École normale supérieure de Cachan, 94235 Cachan Cedex, France
@article{CRPHYS_2014__15_1_6_0,
     author = {Jean-Paul Allouche and Yves Meyer},
     title = {Quasicrystals, model sets, and automatic sequences},
     journal = {Comptes Rendus. Physique},
     pages = {6--11},
     publisher = {Elsevier},
     volume = {15},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crhy.2013.09.002},
     language = {en},
}
TY  - JOUR
AU  - Jean-Paul Allouche
AU  - Yves Meyer
TI  - Quasicrystals, model sets, and automatic sequences
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 6
EP  - 11
VL  - 15
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.002
LA  - en
ID  - CRPHYS_2014__15_1_6_0
ER  - 
%0 Journal Article
%A Jean-Paul Allouche
%A Yves Meyer
%T Quasicrystals, model sets, and automatic sequences
%J Comptes Rendus. Physique
%D 2014
%P 6-11
%V 15
%N 1
%I Elsevier
%R 10.1016/j.crhy.2013.09.002
%G en
%F CRPHYS_2014__15_1_6_0
Jean-Paul Allouche; Yves Meyer. Quasicrystals, model sets, and automatic sequences. Comptes Rendus. Physique, Volume 15 (2014) no. 1, pp. 6-11. doi : 10.1016/j.crhy.2013.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.002/

[1] Y. Meyer Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math., vol. 117, Springer-Verlag, 1970

[2] Y. Meyer Algebraic Numbers and Harmonic Analysis, North-Holland, 1972

[3] Y. Meyer Quasicrystals, Diophantine approximation and algebraic numbers (F. Axel; D. Gratias, eds.), Beyond Quasicrystals, Les Éditions de Physique, Springer, 1995, pp. 3-16

[4] Y. Meyer Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling, Afr. Diaspora J. Math., Volume 13 (2012), pp. 1-45

[5] M. Kohmoto; L.P. Kadanoff; C. Tang Localization problem in one dimension: Mapping and escape, Phys. Rev. Lett., Volume 50 (1983), pp. 1870-1872

[6] S. Östlund; R. Pandit; D. Rand; H.J. Schellnhuber; E.D. Siggia One-dimensional Schrödinger equation with an almost periodic potential, Phys. Rev. Lett., Volume 50 (1983), pp. 1873-1876

[7] J.-C. Lagarias Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom., Volume 21 (1999), pp. 161-191

[8] B. Matei; Y. Meyer Quasicrystals are sets of stable sampling, Complex Var. Elliptic Equ., Volume 55 (2010), pp. 947-964

[9] G. Kozma; N. Lev Exponential Riesz bases, discrepancy of irrational rotations and BMO, J. Fourier Anal. Appl., Volume 17 (2011), pp. 879-898

[10] D. Shechtman; I. Blech; D. Gratias; J.W. Cahn Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953

[11] A. Sütő Schrödinger difference equation with deterministic ergodic potentials (F. Axel; D. Gratias, eds.), Beyond Quasicrystals, Les Éditions de Physique, Springer, 1995, pp. 481-549

[12] M. Morse; G.A. Hedlund Symbolic dynamics II, Sturmian trajectories, Am. J. Math., Volume 62 (1940), pp. 1-42

[13] M. Lothaire Algebraic Combinatorics on Words, Cambridge University Press, 2002

[14] M. Morse; G.A. Hedlund Symbolic dynamics, Am. J. Math., Volume 60 (1938), pp. 815-866

[15] E.M. Coven; G.A. Hedlund Sequences with minimal block growth, Math. Syst. Theory, Volume 7 (1973), pp. 138-153

[16] J.-P. Allouche; J. Shallit The ubiquitous Prouhet–Thue–Morse sequence, Singapore, 1998 (Discrete Math. Theor. Comput. Sci.), Springer, London (1999), pp. 1-16

[17] G. Christol Ensembles presque périodiques k-reconnaissables, Theor. Comput. Sci., Volume 9 (1979), pp. 141-145

[18] G. Christol; T. Kamae; M. Mendès France; G. Rauzy Suites algébriques, automates et substitutions, Bull. Soc. Math. Fr., Volume 108 (1980), pp. 401-419

[19] J.-P. Allouche; J. Shallit Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003

[20] J.-P. Allouche; M. Mendès France Automata and automatic sequences (F. Axel; D. Gratias, eds.), Beyond Quasicrystals, Les Éditions de Physique, Springer, 1995, pp. 293-367

[21] S.-I. Yasutomi On Sturmian sequences which are invariant under some substitutions, Kyoto, 1997, Kluwer Academic Publishers (1999), pp. 347-373

[22] V. Berthé; H. Ei; S. Ito; H. Rao On substitution invariant Sturmian words: an application of Rauzy fractals, RAIRO Theor. Inform. Appl., Volume 41 (2007), pp. 329-349

[23] G. Rauzy Nombres algébriques et substitutions, Bull. Soc. Math. Fr., Volume 110 (1982), pp. 147-178

[24] J.C. Lagarias; P.A.B. Pleasants Repetitive Delone sets and quasicrystals, Ergod. Theor. Dyn. Syst., Volume 23 (2003), pp. 831-867

[25] A. Barbé; F. von Haeseler Automatic sets and Delone sets, J. Phys. A, Math. Gen., Volume 37 (2004), pp. 4017-4038

Cited by Sources:

Comments - Policy