Over the past ten years, Scanning Transmission Electron Microscopes (STEM) fitted with Electron Energy Loss Spectroscopy (EELS) and/or Cathodoluminescence (CL) spectroscopy have demonstrated to be essential tools for probing the optical properties of nano-objects at sub-wavelength scales. Thanks to the possibility of measuring them at a nanometer scale in parallel to the determination of the structure and morphology of the object of interest, new challenging experimental and theoretical horizons have been unveiled. As regards optical properties of metallic nanoparticles, surface plasmons have been mapped at a scale unimaginable only a few years ago, while the relationship between the energy levels and the size of semiconducting nanostructures a few atomic layers thick could directly be measured. This paper reviews some of these highly stimulating recent developments.
Au cours des dix années écoulées, les microscopes électroniques à transmission en balayage (STEM) equipés pour la spectroscopie de perte d'énergie d'électrons (EELS) et/ou la cathodoluminescence (CL) ont démontré leur capacité fondamentale pour une étude fine des propriétés optiques de nano-objets à l'échelle sub-longueur d'onde. Comme ils permettent de les mesurer au niveau du nanomètre en même temps que leur structure et morphologie au niveau atomique, de nouveaux champs d'étude aussi bien expérimentaux que théoriques ont ainsi pu être explorés. En ce qui concerne la réponse optique de nanoparticules métalliques, les plasmons de surface ont été cartographiés à une échelle qui aurait été inimaginable il y a encore quelques années, tandis que la relation entre les niveaux d'énergie et la taille de nanostructures semiconductrices épaisses de quelques couches atomiques a pu être directement établie. Cet article a pour but de présenter une revue rapide de quelques-uns des résultats récents les plus spectaculaires dans ce domaine.
Mots-clés : Microscopie électronique à transmission en balayage, Spectroscopie de perte d'énergie d'électrons, Cathodoluminescence, Plasmons de surface, Excitons, Nano-optique
Mathieu Kociak 1; Odile Stéphan 1; Alexandre Gloter 1; Luiz F. Zagonel 1; Luiz H.G. Tizei 1; Marcel Tencé 1; Katia March 1; Jean Denis Blazit 1; Zackaria Mahfoud 1; Arthur Losquin 1; Sophie Meuret 1; Christian Colliex 1
@article{CRPHYS_2014__15_2-3_158_0, author = {Mathieu Kociak and Odile St\'ephan and Alexandre Gloter and Luiz F. Zagonel and Luiz H.G. Tizei and Marcel Tenc\'e and Katia March and Jean Denis Blazit and Zackaria Mahfoud and Arthur Losquin and Sophie Meuret and Christian Colliex}, title = {Seeing and measuring in colours: {Electron} microscopy and spectroscopies applied to nano-optics}, journal = {Comptes Rendus. Physique}, pages = {158--175}, publisher = {Elsevier}, volume = {15}, number = {2-3}, year = {2014}, doi = {10.1016/j.crhy.2013.10.003}, language = {en}, }
TY - JOUR AU - Mathieu Kociak AU - Odile Stéphan AU - Alexandre Gloter AU - Luiz F. Zagonel AU - Luiz H.G. Tizei AU - Marcel Tencé AU - Katia March AU - Jean Denis Blazit AU - Zackaria Mahfoud AU - Arthur Losquin AU - Sophie Meuret AU - Christian Colliex TI - Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics JO - Comptes Rendus. Physique PY - 2014 SP - 158 EP - 175 VL - 15 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2013.10.003 LA - en ID - CRPHYS_2014__15_2-3_158_0 ER -
%0 Journal Article %A Mathieu Kociak %A Odile Stéphan %A Alexandre Gloter %A Luiz F. Zagonel %A Luiz H.G. Tizei %A Marcel Tencé %A Katia March %A Jean Denis Blazit %A Zackaria Mahfoud %A Arthur Losquin %A Sophie Meuret %A Christian Colliex %T Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics %J Comptes Rendus. Physique %D 2014 %P 158-175 %V 15 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2013.10.003 %G en %F CRPHYS_2014__15_2-3_158_0
Mathieu Kociak; Odile Stéphan; Alexandre Gloter; Luiz F. Zagonel; Luiz H.G. Tizei; Marcel Tencé; Katia March; Jean Denis Blazit; Zackaria Mahfoud; Arthur Losquin; Sophie Meuret; Christian Colliex. Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus. Physique, Seeing and measuring with electrons: Transmission Electron Microscopy today and tomorrow, Volume 15 (2014) no. 2-3, pp. 158-175. doi : 10.1016/j.crhy.2013.10.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.003/
[1] Sted microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics, Volume 3 ( March 2009 ) no. 3, pp. 144-147
[2] Short range plasmon resonators probed by photoemission electron microscopy, Nano Lett., Volume 8 ( March 2008 ) no. 3, pp. 935-940
[3] Optical excitations in electron microscopy, Rev. Modern Phys., Volume 82 (2010), pp. 209-275
[4] Two-dimensional mapping of chemical information at atomic resolution, Phys. Rev. Lett., Volume 99 ( August 2007 ) no. 8, p. 086102
[5] Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale, Phys. Rev. B, Volume 84 ( Dec 2011 ), p. 220102
[6] Improving energy resolution of EELS spectra: an alternative to the monochromator solution, Ultramicroscopy, Volume 96 (2003) no. 3–4, pp. 385-400
[7] Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys., Volume 3 ( May 2007 ) no. 5, pp. 348-353
[8] Single particle plasmon spectroscopy of silver nanowires and gold nanorods, Nano Lett., Volume 8 ( October 2008 ) no. 10, pp. 3200-3204
[9] Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding, Phys. Rev. Lett., Volume 110 ( February 2013 ) no. 6, p. 066801
[10] Probing carrier dynamics in nanostructures by picosecond cathodoluminescence, Nature, Volume 438 ( November 2005 ) no. 7067, pp. 479-482
[11] Modal decomposition of surface-plasmon whispering gallery resonators, Nano Lett., Volume 9 ( September 2009 ) no. 9, pp. 3147-3150
[12] Exploring the origin and nature of luminescent regions in CVD synthetic diamond, Gems Gemol., Volume 47 (2011) no. 3, pp. 202-207
[13] Cathodoluminescence in transmission electron microscopy, J. Microsc., Volume 224 ( October 2006 ), pp. 79-85
[14] Direct correlation between structural and optical properties of III–V nitride nanowire heterostructures with nanoscale resolution, Nano Lett., Volume 9 ( November 2009 ) no. 11, pp. 3940-3944
[15] Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure, Nano Lett., Volume 11 ( February 2011 ) no. 2, pp. 568-573
[16] Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy, Volume 28 ( April 1989 ) no. 1–4, pp. 252-257
[17] Electron-energy-loss spectroscopy mapping, Mikrochim. Acta, Volume 71 (1994), pp. 114-115
[18]
, Springer (2011), p. 163 (Chapter 4)[19] Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss eftem imaging, Opt. Lett., Volume 34 ( April 2009 ) no. 7, pp. 1003-1005
[20] Comparison of eftem and stem eels plasmon imaging of gold nanoparticles in a monochromated tem, Ultramicroscopy, Volume 110 ( July 2010 ) no. 8, pp. 1087-1093
[21] Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets, Phys. Rev. B, Volume 83 ( May 2011 ) no. 19, p. 195433
[22] Eftem spectrum imaging at high-energy resolution, Ultramicroscopy, Volume 106 ( October 2006 ) no. 11–12, pp. 1129-1138
[23] Spatially resolved quantum nano-optics of single photons using an electron microscope, Phys. Rev. Lett., Volume 110 ( April 2013 ) no. 15, p. 153604
[24] Plasma losses by fast electrons in thin films, Phys. Rev., Volume 106 ( Jun 1957 ), pp. 874-881
[25] Energy-loss spectrum of fast electrons in a dielectric slab. I. Nonretarded losses and Cherenkov bulk loss, Phys. Rev. B, Volume 1 ( May 1970 ), pp. 3588-3598
[26] Generation of surface excitations on dielectric spheres by an external electron beam, Phys. Rev. Lett., Volume 55 (1985), pp. 1526-1529
[27] Energy loss of electrons travelling through cylindrical holes, Surf. Sci., Volume 209 (1989), pp. 465-480
[28] Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube, Phys. Rev. B, Volume 66 ( December 2002 ) no. 23, p. 235419
[29] Relativistic energy loss induced photon emission in the interaction of a dielectric sphere with an external electron beam, Phys. Rev. B, Volume 59 (1999), pp. 3095-3107
[30] Photon emission from silver particles induced by a high-energy electron beam, Phys. Rev. B, Volume 6420 ( November 2001 ) no. 20, p. 205419
[31] Spectral imaging of individual split-ring resonators, Phys. Rev. Lett., Volume 105 ( Dec 2010 ) no. 25, p. 255501
[32] High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures, Nano Lett., Volume 11 ( March 2011 ) no. 3, pp. 1323-1330
[33] Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag GmbH, 2007
[34] Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett., Volume 100 ( March 2008 ) no. 10, p. 106804
[35] Cherenkov effect as a probe of photonic nanostructures, Phys. Rev. Lett., Volume 91 ( October 2003 ) no. 14, p. 143902
[36] Definition and measurement of the local density of electromagnetic states close to an interface, Phys. Rev. B, Volume 68 ( December 2003 ) no. 24, p. 245405
[37] Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature, Volume 412 ( August 2001 ) no. 6847, pp. 617-620
[38] Electron-energy-loss spectra of plasmonic nanoparticles, Phys. Rev. Lett., Volume 103 ( September 2009 ) no. 10, p. 106801
[39] Theoretical principles of near-field optical microscopies and spectroscopies, J. Chem. Phys., Volume 112 ( May 2000 ) no. 18, pp. 7775-7789
[40] Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes, Phys. Rev. B, Volume 85 ( Jun 2012 ), p. 245447
[41] Accurate modeling of particle substrate coupling of surface-plasmon excitation in eels, Ultramicroscopy, Volume 31 ( December 1989 ) no. 4, pp. 345-350
[42] Numerical simulation of electron energy loss near inhomogeneous dielectrics, Phys. Rev. B, Volume 56 ( Dec 1997 ) no. 24, pp. 15873-15884
[43] Tomography of particle plasmon fields from electron energy loss spectroscopy, Phys. Rev. Lett., Volume 111 ( Aug 2013 ), p. 076801
[44] Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature, Volume 502 ( October 2013 ) no. 7469, pp. 80-84
[45] Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms, Nano Lett., Volume 10 ( March 2010 ) no. 3, pp. 902-907
[46] Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett., Volume 11 ( April 2011 ) no. 4, pp. 1499-1504
[47] Understanding plasmonic properties in metallic nanostructures by correlating photonic and electronic excitations, J. Phys. Chem. Lett., Volume 4 ( April 2013 ) no. 7, pp. 1070-1078
[48] Retarded field calculation of electron energy loss in inhomogeneous dielectrics, Phys. Rev. B, Volume 65 ( March 2002 ) no. 11, p. 115418
[49] MNPBEM – a matlab toolbox for the simulation of plasmonic nanoparticles, Comput. Phys. Commun., Volume 183 ( February 2012 ) no. 2, pp. 370-381
[50] EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation, Ultramicroscopy, Volume 110 ( July 2010 ) no. 8, pp. 1075-1080
[51] Theory of the optical properties of ionic crystal cubes, Phys. Rev. B, Volume 11 ( Feb 1975 ), pp. 1732-1740
[52] Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with fdtd simulations, J. Phys. Chem. C, Volume 116 ( July 2012 ) no. 29, pp. 15610-15619
[53] Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams, Surf. Interface Anal., Volume 38 ( December 2006 ) no. 12–13, pp. 1725-1730
[54] Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy, Nano Lett., Volume 7 ( September 2007 ) no. 9, pp. 2843-2846
[55] Mapping plasmons in nanoantennas via cathodoluminescence, New J. Phys., Volume 10 ( October 2008 ), p. 105009
[56] Deep subwavelength spatial characterization of angular emission from single-crystal au plasmonic ridge nanoantennas, ACS Nano, Volume 6 ( February 2012 ) no. 2, pp. 1742-1750
[57] Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution, Opt. Express, Volume 15 ( September 2007 ) no. 18, pp. 11313-11320
[58] Fabry–Perot resonators for surface plasmon polaritons probed by cathodoluminescence, Appl. Phys. Lett., Volume 94 ( May 2009 ) no. 18, p. 183104
[59] Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal, Opt. Express, Volume 17 ( December 2009 ) no. 26, pp. 23664-23671
[60] Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence, Opt. Express, Volume 19 ( June 2011 ) no. 13, pp. 12365-12374
[61] Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy, Nano Lett., Volume 11 ( September 2011 ) no. 9, pp. 3779-3784
[62] Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study, Nano Lett., Volume 12 ( August 2012 ) no. 8, pp. 4172-4180
[63] Spectroscopy and imaging of plasmonic modes over a single decahedron gold nanoparticle: A combined experimental and numerical study, J. Phys. Chem. C, Volume 116 ( December 2012 ) no. 49, pp. 25969-25976
[64] Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods, Phys. Rev. B, Volume 80 ( September 2009 ) no. 11, p. 113411
[65] From isolated metaatoms to photonic metamaterials: Mapping of collective near-field phenomena with eels, 2012 Conference on Lasers and Electro-Optics (CLEO), 2012
[66] From isolated metaatoms to photonic metamaterials: Evolution of the plasmonic near-field, Nano Lett., Volume 13 ( February 2013 ) no. 2, pp. 703-708
[67] Surface plasmon modes of a single silver nanorod: an electron energy loss study, Opt. Express, Volume 19 ( August 2011 ) no. 16, pp. 15371-15379
[68] Dark plasmonic breathing modes in silver nanodisks, Nano Lett., Volume 12 ( November 2012 ) no. 11, pp. 5780-5783
[69] Ultralocal modification of surface plasmons properties in silver nanocubes, Nano Lett., Volume 12 ( Mar 2012 ) no. 3, pp. 1288-1294
[70] Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars, Eur. Phys. J. Appl. Phys., Volume 54 ( June 2011 ) no. 3, p. 33512
[71] Surface plasmon damping quantified with an electron nanoprobe, Sci. Rep., Volume 3 ( February 2013 ), p. 1312
[72] Asymmetric silver nanocarrot structures: Solution synthesis and their asymmetric plasmonic resonances, J. Am. Chem. Soc., Volume 135 (2013) no. 26, pp. 9616-9619
[73] Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology, Volume 18 ( April 2007 ) no. 16, p. 165505
[74] Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam, Nano Lett., Volume 9 (2009) no. 1, pp. 399-404
[75] Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers, ACS Nano, Volume 5 ( December 2011 ) no. 12, pp. 9845-9853
[76] Observation of quantum tunneling between two plasmonic nanoparticles, Nano Lett., Volume 13 ( February 2013 ) no. 2, pp. 564-569
[77] Breaking the mode degeneracy of surface plasmon resonances in a triangular system, Langmuir, Volume 28 ( June 2012 ) no. 24, pp. 8867-8873
[78] Nanoplasmonics: Classical down to the nanometer scale, Nano Lett., Volume 12 ( March 2012 ) no. 3, pp. 1683-1689
[79] Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible, Nano Lett., Volume 12 ( October 2012 ) no. 10, pp. 5239-5244
[80] Light splitting in nanoporous gold and silver, ACS Nano, Volume 6 ( January 2012 ) no. 1, pp. 319-326
[81] Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films, Phys. Rev. B, Volume 88 ( Sep 2013 ), p. 115427
[82] Surface plasmon mapping of dumbbell-shaped gold nanorods: The effect of silver coating, Langmuir, Volume 28 ( June 2012 ) no. 24, pp. 9063-9070
[83] Silver nanowires as surface plasmon resonators, Phys. Rev. Lett., Volume 95 ( December 2005 ) no. 25, p. 257403
[84] Fabry–Perot resonances in one-dimensional plasmonic nanostructures, Nano Lett., Volume 9 (2009) no. 6, pp. 2372-2377
[85] Direct near-field optical imaging of higher order plasmonic resonances, Nano Lett., Volume 8 ( October 2008 ) no. 10, pp. 3155-3159
[86] Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials, Bull. Chem. Soc. Jpn., Volume 81 (2008), pp. 659-675
[87] Antennas for light, Nat. Photonics, Volume 5 ( February 2011 ) no. 2, pp. 83-90
[88] Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [invited], Opt. Mater. Express, Volume 1 ( September 2011 ) no. 5, pp. 1009-1018
[89] Controlled spontaneous emission in plasmonic whispering gallery antennas, Appl. Phys. Lett., Volume 99 ( December 2011 ) no. 23, p. 231112
[90] Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy, ACS Nano, Volume 3 ( October 2009 ) no. 10, pp. 2965-2974
[91] Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy, Ultramicroscopy, Volume 109 ( August 2009 ) no. 9, pp. 1164-1170
[92] A tem and electron energy loss spectroscopy (eels) investigation of active and inactive silver particles for surface enhanced resonance raman spectroscopy (serrs), Faraday Discuss., Volume 132 (2006), pp. 171-178
[93] Zeptomol detection through controlled ultrasensitive surface-enhanced raman scattering, J. Am. Chem. Soc., Volume 131 ( April 2009 ) no. 13, p. 4616
[94] Surface plasmon coupling in clusters of small spheres, Phys. Rev. Lett., Volume 49 (1982), pp. 936-940
[95] Coupling effects in the excitations by an external electron beam near close particles, Phys. Rev. B, Volume 56 ( September 1997 ) no. 12, pp. 7623-7635
[96] Hybridized metal slit eigenmodes as an illustration of babinet's principle, ACS Nano, Volume 5 ( August 2011 ) no. 8, pp. 6701-6706
[97] Energy-loss probability of stem electrons in cylindrical surfaces, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, Volume 96 ( May 1995 ) no. 3–4, pp. 465-469
[98] Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: A systematic single-particle approach, J. Phys. Chem. C, Volume 114 (2010), p. 12511
[99] Substrate-induced fano resonances of a plasmonic: Nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed, Nano Lett., Volume 11 ( April 2011 ) no. 4, pp. 1657-1663
[100] Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies, J. Appl. Phys., Volume 76 ( August 1994 ) no. 3, pp. 1363-1398
[101] Characteristics of ingaas quantum dot infrared photodetectors, Appl. Phys. Lett., Volume 73 ( November 1998 ) no. 21, pp. 3153-3155
[102] Design and characterization of gan/ingan solar cells, Appl. Phys. Lett., Volume 91 ( September 2007 ) no. 13, p. 132117
[103] Quantum cryptography, Rev. Mod. Phys., Volume 74 ( January 2002 ) no. 1, pp. 145-195
[104] Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies, Phys. Rev. B, Volume 76 ( October 2007 ) no. 16, p. 165131
[105] Cathodoluminescence Microscopy of Inorganic Solids, Springer US, 1990
[106] Cathodoluminescence spectroscopy and imaging of GaN/(Al,Ga)N nanocolumns containing quantum disks, Appl. Phys. Lett., Volume 90 ( April 2007 ) no. 16, p. 161117
[107] Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites, Appl. Phys. Lett., Volume 70 ( April 1997 ) no. 16, pp. 2132-2134
[108] Ultranarrow luminescence lines from single quantum dots, Phys. Rev. Lett., Volume 74 ( May 1995 ) no. 20, pp. 4043-4046
[109] Study of isolated cubic GaN quantum dots by low-temperature cathodoluminescence, Physica E, Low-Dimens. Syst. Nanostruct., Volume 26 ( February 2005 ) no. 1–4, pp. 203-206
[110] Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire, Nano Lett., Volume 10 ( August 2010 ) no. 8, pp. 2939-2943
[111] Photoluminescence polarization properties of single GaN nanowires containing AlxGa(1-x)N/GaN quantum discs, Phys. Rev. B, Volume 81 ( January 2010 ) no. 4, p. 045411
[112] Evidence for quantum-confined stark effect in GaN/AlN quantum dots in nanowires, Phys. Rev. B, Volume 80 ( September 2009 ) no. 12, p. 121305
[113] Growth mechanism and properties of ingan insertions in GaN nanowires, Nanotechnology, Volume 23 ( April 2012 ) no. 13, p. 135703
[114] Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires, Nanotechnology, Volume 23 (2012) no. 45, p. 455205
[115] Mapping localized surface plasmons within silver nanocubes using cathodoluminescence hyperspectral imaging, J. Phys. Chem. C, Volume 115 (2011) no. 29, pp. 14031-14035
[116] Probing light emission from quantum wells within a single nanorod, Nanotechnology, Volume 24 (2013), p. 365704
[117] Band-edge electroabsorption in quantum well structures – the quantum-confined stark-effect, Phys. Rev. Lett., Volume 53 (1984) no. 22, pp. 2173-2176
[118] Cathodoluminescence study of carrier diffusion in AlGaN, J. Appl. Phys., Volume 94 ( August 2003 ) no. 4, pp. 2755-2757
[119] Study of single-electron excitations by electron microscopy. II. Cathodoluminescence image contrast from localized energy transfers, Philos. Mag. A, Volume 41 (1979), pp. 809-827
[120] Cathodoluminescence and polarization studies from individual dislocations in diamond, Philos. Mag. B, Volume 49 (1984) no. 6, pp. 609-629
[121] Spatially resolved investigation of strain and composition variations in (In,Ga)N/GaN epilayers, Appl. Phys. Lett., Volume 102 ( February 2013 ) no. 5, p. 052109
[122] Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence, Nanotechnology, Volume 24 (2013), p. 305703
[123] Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV0 emission properties, Nanotechnology, Volume 23 ( May 2012 ) no. 17, p. 175702
[124] Anti-photon, Appl. Phys. B, Lasers Opt., Volume 60 ( February 1995 ) no. 2–3, pp. 77-84
[125] Single photon quantum cryptography, Phys. Rev. Lett., Volume 89 ( October 2002 ) no. 18, p. 187901
[126] Deterministic generation of single photons from one atom trapped in a cavity, Science, Volume 303 ( March 2004 ) no. 5666, pp. 1992-1994
[127] A gallium-nitride single-photon source operating at 200k, Nat. Mater., Volume 5 ( November 2006 ) no. 11, pp. 887-892
[128] Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition, Phys. Rev. B, Volume 39 ( June 1989 ) no. 18, pp. 13367-13377
[129] Electrically driven single-photon source at room temperature in diamond, Nat. Photonics, Volume 6 ( May 2012 ) no. 5, pp. 299-303
[130] Diamond based light-emitting diode for visible single-photon emission at room temperature, Appl. Phys. Lett., Volume 99 ( December 2011 ) no. 25, p. 251106
Cited by Sources:
Comments - Policy