[Apports de la microscopie électronique à l'étude des matériaux carbonés]
Cet article présente une brève revue des études réalisées en microscopie électronique sur des matériaux carbonés. Tous les aspects essentiels y sont abordés, depuis la préparation des échantillons jusqu'à l'imagerie et la spectroscopie à très haute résolution spatiale, en passant par les mesures conventionnelles de structure dans l'espace réel et dans l'espace réciproque. Un intérêt plus spécifique est cependant consacré aux développements les plus récents, incluant, d'une part, l'outil, à savoir la microscopie électronique à correction d'aberrations, et, d'autre part, l'objet d'étude le plus étudié aujourd'hui, à savoir la variété allotropique de basse dimension, le graphène.
This paper provides a brief review on electron microscopic studies of carbon materials. We discuss all aspects ranging from sample preparation via basics of the structure and its reciprocal space representation to high-resolution imaging and spectroscopy. Emphasis is given to recent developments, namely aberration-corrected electron microscopy and the newest low-dimensional carbon allotrope, graphene.
Mot clés : Carbone, Nanotube de carbone, Graphène, Microscopie électronique à haute résolution
Clemens Mangler 1 ; Jannik C. Meyer 1
@article{CRPHYS_2014__15_2-3_241_0, author = {Clemens Mangler and Jannik C. Meyer}, title = {Using electron beams to investigate carbonaceous materials}, journal = {Comptes Rendus. Physique}, pages = {241--257}, publisher = {Elsevier}, volume = {15}, number = {2-3}, year = {2014}, doi = {10.1016/j.crhy.2013.10.011}, language = {en}, }
Clemens Mangler; Jannik C. Meyer. Using electron beams to investigate carbonaceous materials. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 241-257. doi : 10.1016/j.crhy.2013.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.011/
[1] O strukture ugleroda obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zh. Fiz. Khim., Volume 26 (1952), p. 88
[2] Detection of dislocation by the moiré pattern in electron micrographs, Acta Crystallogr., Volume 10 ( Feb. 1957 ), p. 143
[3] An electron microscope study of synthetic graphite, Proc. R. Soc. Lond. Ser. A, Volume 253 (1959) no. 1274, pp. 390-402
[4] Electron microscope study of radiation damage in graphite, J. Appl. Phys., Volume 32 (1961) no. 5, pp. 869-876
[5] Observation of lattice defects in graphite by electron microscopy. Part I, J. Phys. Soc. Jpn., Volume 16 (1961) no. 2, pp. 214-227
[6] Imperfections in natural graphite, J. Nucl. Mater., Volume 4 ( May 1961 ), pp. 70-78
[7] Surface properties of extremely thin graphite lamellae, Proceedings of the Fifth Conference on Carbon, vol. 1, 1962, pp. 73-80
[8] Single-shell carbon nanotubes of 1-nm diameter, Nature, Volume 363 ( June 1993 ), pp. 603-605
[9] Helical microtubules of graphitic carbon, Nature, Volume 354 ( Nov. 1991 ), pp. 56-58
[10] Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, Volume 363 ( June 1993 ), pp. 605-607
[11] Electric field effect in atomically thin carbon films, Science, Volume 306 ( Oct. 2004 ), pp. 666-669
[12] C60: Buckminsterfullerene, Chem. Rev., Volume 91 (1991) no. 6, pp. 1213-1235
[13] Structural analysis of conical carbon nanofibers, Carbon, Volume 44 ( Feb. 2006 ), pp. 360-373
[14] Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons, Nano Lett., Volume 8 ( Sept. 2008 ), pp. 2773-2778
[15] Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons, Science, Volume 323 ( Mar. 2009 ), pp. 1701-1705
[16] Curling and closure of graphitic networks under electron-beam irradiation, Nature, Volume 359 ( Oct. 1992 ), pp. 707-709
[17] Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., Volume 204 ( Mar. 1993 ), pp. 277-282
[18] A chemical route to carbon nanoscrolls, Science, Volume 299 ( Feb. 2003 ), p. 1361
[19] Deriving carbon atomic chains from graphene, Phys. Rev. Lett., Volume 102 ( May 2009 ), p. 205501
[20] From graphene constrictions to single carbon chains, New J. Phys., Volume 11 ( Aug. 2009 ), p. 083019
[21] Electrical transport measured in atomic carbon chains, Nano Lett. ( July 2013 )
[22] Novel nanocarbons—structure, properties, and potential applications, Adv. Mater., Volume 10 (1998) no. 15, pp. 1157-1171
[23] Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures, Biophys. Rev., Volume 1 ( Mar. 2009 ), pp. 37-42
[24] Improvement of an electron probe profile using the foil lens, Microscopy (Tokyo), Volume 31 ( Jan. 1982 ), pp. 360-367
[25] Transmission rate of electrons for carbon films used as the foil of the foil lens, Microscopy (Tokyo), Volume 33 ( Jan. 1984 ), pp. 323-328
[26] Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM, J. Phys. Chem. Solids, Volume 61 ( July 2000 ), pp. 1025-1030
[27] In situ imaging of field emission from individual carbon nanotubes and their structural damage, Appl. Phys. Lett., Volume 80 ( Feb. 2002 ), p. 856
[28] Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett., Volume 88 ( Jan. 2002 ), p. 056804
[29] High brightness electron beam from a multi-walled carbon nanotube, Nature, Volume 420 ( Nov. 2002 ), pp. 393-395
[30] Carbon nanotube electrostatic biprism: principle of operation and proof of concept, Microsc. Microanal., Volume 10 ( Aug. 2004 ), pp. 420-424
[31] Carbon nanotubes as elements to focus electron beams by Fresnel diffraction, Appl. Phys. Lett., Volume 83 ( Dec. 2003 ), p. 5056
[32] Formation, atomic structural optimization and electronic structures of tetrahedral carbon onion, Diam. Relat. Mater., Volume 13 ( Apr. 2004 ), pp. 1337-1341
[33] Carbon nanotubes: past, present, and future, Physica B, Condens. Matter, Volume 323 ( Oct. 2002 ), pp. 1-5
[34] From point defects in graphene to two-dimensional amorphous carbon, Phys. Rev. Lett., Volume 106 ( Mar. 2011 ), p. 105505
[35] Imaging the atomic structure of activated carbon, J. Phys. Condens. Matter, Volume 20 ( Sept. 2008 ), p. 362201
[36] Prediction of a pure-carbon planar covalent metal, Phys. Rev. B, Volume 53 ( May 1996 ), p. R13303-R13305
[37] Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys., Volume 112 ( Oct. 2012 ), p. 074315 (7 pp.)
[38] Nanoengineering defect structures on graphene, Phys. Rev. Lett., Volume 100 ( Apr. 2008 ), p. 175503
[39] New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett., Volume 84 ( Feb. 2000 ), pp. 1716-1719
[40] Imperfections in natural graphite, J. Nucl. Mater., Volume 4 ( May 1961 ), pp. 70-78
[41] Can we determine the structure of thin amorphous film using scanning transmission electron microscopy, Proceedings of the 37th Annual EMSA Meeting, 1979, pp. 498-501
[42] Seeing single atoms, Ultramicroscopy, Volume 123 ( Dec. 2012 ), pp. 3-12
[43] High-resolution scanning transmission electron microscopy, Science, Volume 221 ( July 1983 ), pp. 325-330
[44] Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, Volume 32 ( Mar. 1976 ), pp. 335-349
[45] Methods for carbon nanotubes synthesis—review, J. Mater. Chem., Volume 21 ( Oct. 2011 ), pp. 15872-15884
[46] Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine, Carbon, Volume 39 ( Aug. 2001 ), pp. 1533-1536
[47] Supercurrents through single-walled carbon nanotubes, Science, Volume 284 ( May 1999 ), pp. 1508-1511
[48] Linking chiral indices and transport properties of double-walled carbon nanotubes, Phys. Rev. Lett., Volume 89 ( Sept. 2002 ), p. 155501
[49] Rotational actuators based on carbon nanotubes, Nature, Volume 424 ( July 2003 ), pp. 408-410
[50] Transmission electron microscopy and transistor characteristics of the same carbon nanotube, Appl. Phys. Lett., Volume 85 (2004) no. 14, p. 2911
[51] Single-molecule torsional pendulum, Science, Volume 309 ( Sept. 2005 ), pp. 1539-1541
[52] Raman modes of index-identified freestanding single-walled carbon nanotubes, Phys. Rev. Lett., Volume 95 (2005) no. 21, p. 217401
[53] Electron diffraction analysis of individual single-walled carbon nanotubes, Ultramicroscopy, Volume 106 ( Feb. 2006 ), pp. 176-190
[54] Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining, J. Micromech. Microeng., Volume 17 (2007), pp. 603-608
[55] Atomic-scale imaging of carbon nanofibre growth, Nature, Volume 427 ( Jan. 2004 ), pp. 426-429
[56] In situ observations of carbon nanotube formation using environmental transmission electron microscopy, Appl. Phys. Lett., Volume 84 ( Feb. 2004 ), p. 990
[57] In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation, Nano Lett., Volume 7 ( Mar. 2007 ), pp. 602-608
[58] Characterization of Fe-catalyzed carbon nanotubes grown by thermal chemical vapor deposition, J. Cryst. Growth, Volume 244 ( Oct. 2002 ), pp. 211-217
[59] TEM sample preparation by FIB for carbon nanotube interconnects, Ultramicroscopy, Volume 109 ( Oct. 2009 ), pp. 1353-1359
[60] Making graphene visible, Appl. Phys. Lett., Volume 91 ( Aug. 2007 ), p. 063124
[61] On the roughness of single- and bi-layer graphene membranes, Solid State Commun., Volume 143 ( July 2007 ), pp. 101-109
[62] The structure of suspended graphene sheets, Nature, Volume 446 ( Mar. 2007 ), pp. 60-63
[63] Macroscopic graphene membranes and their extraordinary stiffness, Nano Lett., Volume 8 ( Aug. 2008 ), pp. 2442-2446
[64] Fine structure constant defines visual transparency of graphene, Science, Volume 320 ( June 2008 ), p. 1308
[65] Hydrocarbon lithography on graphene membranes, Appl. Phys. Lett., Volume 92 ( Mar. 2008 ), pp. 123110-123113
[66] Atomic structure of reduced graphene oxide, Nano Lett., Volume 10 ( Apr. 2010 ), pp. 1144-1148
[67] Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater., Volume 22 ( Aug. 2010 ), pp. 4467-4472
[68] Electronic properties and atomic structure of graphene oxide membranes, Carbon, Volume 49 ( Mar. 2011 ), pp. 966-972
[69] Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett., Volume 93 ( Sept. 2008 ), p. 113103 (3 pp.)
[70] Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., Volume 9 ( Jan. 2009 ), pp. 30-35
[71] Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, Volume 324 ( June 2009 ), pp. 1312-1314
[72] Transfer-free batch fabrication of large-area suspended graphene membranes, ACS Nano, Volume 4 ( Aug. 2010 ), pp. 4762-4768
[73] Growth and properties of few-layer graphene prepared by chemical vapor deposition, Carbon, Volume 48 (2010) no. 4, pp. 1088-1094
[74] Graphene annealing: How clean can it be?, Nano Lett., Volume 12 (2012) no. 1, pp. 414-419
[75] Clean transfer of graphene for isolation and suspension, ACS Nano, Volume 5 ( Mar. 2011 ), pp. 2362-2368
[76] Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, Volume 469 ( Jan. 2011 ), pp. 389-392
[77] Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices, Nat. Mater., Volume 11 ( July 2012 ), pp. 9-12
[78] A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates, Physica E, Low-Dimens. Syst. Nanostruct., Volume 37 (2007) no. 1–2, pp. 6-10
[79] Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, Volume 287 ( Jan. 2000 ), pp. 637-640
[80] The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes, Nanotechnology, Volume 17 ( Jan. 2006 ), pp. 272-276
[81] The threshold curve for the displacement of atoms in graphite: Experiments on the resistivity changes produced in single crystals by fast electron irradiation at 15 K, Carbon, Volume 1 ( Apr. 1964 ), pp. 345-352
[82] Anisotropic electron-beam damage and the collapse of carbon nanotubes, Phys. Rev. B Condens. Matter, Volume 54 ( Aug. 1996 ), pp. 5927-5931
[83] Irradiation effects in carbon nanostructures, Rep. Prog. Phys., Volume 62 (1999), p. 1181
[84] Electron irradiation effects in single wall carbon nanotubes, J. Appl. Phys., Volume 90 ( Oct. 2001 ), pp. 3509-3515
[85] Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality, Phys. Rev. B, Volume 72 ( Sept. 2005 )
[86] Electron knock-on cross section of carbon and boron nitride nanotubes, Phys. Rev. B, Volume 75 ( June 2007 ), pp. 1-9
[87] Electron irradiation-induced destruction of carbon nanotubes in electron microscopes, Ultramicroscopy, Volume 108 ( Dec. 2007 ), pp. 52-57
[88] Investigating the diameter-dependent stability of single-walled carbon nanotubes, ACS Nano, Volume 3 ( June 2009 ), pp. 1557-1563
[89] Accurate measurement of electron beam induced displacement cross sections for single-layer graphene, Phys. Rev. Lett., Volume 108 ( May 2012 ), p. 196102
[90] Inclusion of radiation damage dynamics in high-resolution transmission electron microscopy image simulations: The example of graphene, Phys. Rev. B, Volume 87 ( Mar. 2013 ), p. 094110
[91] Precision cutting of nanotubes with a low-energy electron beam, Appl. Phys. Lett., Volume 86 (2005) no. 5, p. 053109
[92] Higher-order aberration corrector for an image-forming system in a transmission electron microscope, Ultramicroscopy, Volume 110 ( July 2010 ), pp. 958-961
[93] Transmission electron microscopy at 20 kV for imaging and spectroscopy, Ultramicroscopy, Volume 111 ( July 2011 ), pp. 1239-1246
[94] Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy, Volume 110 ( July 2010 ), pp. 935-945
[95] Stone–Wales-type transformations in carbon nanostructures driven by electron irradiation, Phys. Rev. B, Volume 83 ( June 2011 ), p. 245420
[96] Capturing the signature of single atoms with the tiny probe of a STEM, Ultramicroscopy, Volume 123 ( Dec. 2012 ), pp. 80-89
[97] Engineering of nanostructured carbon materials with electron or ion beams, Nat. Mater., Volume 6 (2007) no. 10, pp. 723-733
[98] Shaping single walled nanotubes with an electron beam, Phys. Rev. B, Volume 77 ( Jan. 2008 ), pp. 1-8
[99] Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 A diameter, Nano Lett., Volume 9 ( June 2009 ), pp. 2285-2289
[100] Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett., Volume 93 ( Sept. 2008 ), p. 113107
[101] The engineering of hot carbon nanotubes with a focused electron beam, Nano Lett., Volume 4 ( June 2004 ), pp. 1143-1146
[102] Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures, Nano Lett., Volume 11 ( June 2011 ), pp. 2247-2250
[103] Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes, Small, Volume 1 ( Oct. 2005 ), pp. 953-956
[104] Optimum HRTEM image contrast at 20 kV and 80 kV-exemplified by graphene, Ultramicroscopy, Volume 112 ( Jan. 2012 ), pp. 39-46
[105] Quantitative atomic 3-D imaging of single/double sheet graphene structure, Carbon, Volume 49 ( Feb. 2011 ), pp. 556-562
[106] Electron diffraction by carbon nanotubes, Scanning Microsc., Volume 12 (1998) no. 3, pp. 415-436
[107] Diffraction by DNA, carbon nanotubes and other helical nanostructures, Rep. Prog. Phys., Volume 68 ( May 2005 ), pp. 1181-1249
[108] Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction, Appl. Phys. Lett., Volume 82 (2003) no. 16, p. 2703
[109] The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects, Ultramicroscopy, Volume 54 ( June 1994 ), pp. 237-249
[110] A direct method to determine the chiral indices of carbon nanotubes, Chem. Phys. Lett., Volume 408 ( June 2005 ), pp. 75-79
[111] Quantitative theory of diffraction by carbon nanotubes, Phys. Rev. B, Volume 56 ( Aug. 1997 ), pp. 3571-3574
[112] Atomic resolution imaging of a carbon nanotube from diffraction intensities, Science, Volume 300 ( May 2003 ), pp. 1419-1421
[113] Measurement accuracy of the diameter of a carbon nanotube from TEM images, Phys. Rev. B, Volume 65 ( Apr. 2002 ), pp. 1-7
[114] Electron diffraction from carbon nanotubes, Rep. Prog. Phys., Volume 69 ( Oct. 2006 ), pp. 2761-2821
[115] Electron diffraction from elliptical nanotubes, Chem. Phys. Lett., Volume 406 ( Apr. 2005 ), pp. 106-110
[116] Measurement of handedness in multiwalled carbon nanotubes by electron diffraction, Chem. Phys. Lett., Volume 411 ( Aug. 2005 ), pp. 291-296
[117] Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy, Nat. Mater., Volume 10 ( Mar. 2011 ), pp. 209-215
[118] Grain boundary mapping in polycrystalline graphene, ACS Nano, Volume 5 ( Mar. 2011 ), pp. 2142-2146
[119] Twinning and twisting of tri- and bilayer graphene, Nano Lett., Volume 12 ( Mar. 2012 ), pp. 1609-1615
[120] Measuring the corrugation amplitude of suspended and supported graphene, Phys. Rev. B, Volume 84 ( Dec. 2011 ), p. 235417
[121] Tailoring electrical transport across grain boundaries in polycrystalline graphene, Science (New York, NY), Volume 336 ( June 2012 ), pp. 1143-1146
[122] A composite method for the determination of the chirality of single walled carbon nanotubes, J. Microsc., Volume 212 ( Nov. 2003 ), pp. 152-157
[123] Direct evidence for atomic defects in graphene layers, Nature, Volume 430 ( Aug. 2004 ), pp. 870-873
[124] Electron microscopy image enhanced, Nature, Volume 392 ( Apr. 1998 ), pp. 768-769
[125] Sub-ångstrom resolution using aberration corrected electron optics, Nature, Volume 418 ( Aug. 2002 ), pp. 617-620
[126] Imaging active topological defects in carbon nanotubes, Nat. Nanotechnol., Volume 2 ( June 2007 ), pp. 358-360
[127] Imaging and dynamics of light atoms and molecules on graphene, Nature, Volume 454 ( July 2008 ), pp. 319-322
[128] Free-standing graphene at atomic resolution, Nat. Nanotechnol., Volume 3 ( Nov. 2008 ), pp. 676-681
[129] Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Lett., Volume 8 ( Nov. 2008 ), pp. 3582-3586
[130] Dislocation-driven deformations in graphene, Science, Volume 337 ( July 2012 ), pp. 209-212
[131] Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation, Nat. Commun., Volume 4 ( June 2013 ), p. 2098
[132] Direct determination of the chemical bonding of individual impurities in graphene, Phys. Rev. Lett., Volume 109 ( Nov. 2012 ), p. 206803
[133] Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett., Volume 13 (2013) no. 10, pp. 4989-4995
[134] Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction, Phys. Rev. B, Volume 76 ( Sept. 2007 ), p. 115423
[135] Theoretical studies of icosahedral c60 and some related species, Chem. Phys. Lett., Volume 128 ( Aug. 1986 ), pp. 501-503
[136] Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers, Phys. Rev. Lett., Volume 95 ( Nov. 2005 ), p. 205501
[137] Stability of dislocation defect with two pentagon–heptagon pairs in graphene, Phys. Rev. B, Volume 78 ( Oct. 2008 ), p. 1654
[138] Atomic structure of ABC rhombohedral stacked trilayer graphene, ACS Nano, Volume 6 ( June 2012 ), pp. 5680-5686
[139] Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature, Volume 464 ( Mar. 2010 ), pp. 571-574
[140] Atomically localized plasmon enhancement in monolayer graphene, Nat. Nanotechnol., Volume 7 ( Mar. 2012 ), pp. 161-165
[141] Advances in Graphene Science, InTech, July 2013
[142] Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative, Opt. Express, Volume 14 ( May 2006 ), p. 3830
[143] Advances in Electronics and Electron Physics, vol. 75, Elsevier, 1989
[144] Localized and delocalized electronic states in single-wall carbon nanotubes, Phys. Rev. Lett., Volume 80 ( May 1998 ), pp. 4729-4732
[145] Electron energy-loss spectra of carbon nanotubes, Jpn. J. Appl. Phys., Volume 31 ( Oct. 1992 ), p. L1484-L1487
[146] Electron energy-loss spectroscopy of carbon onions, Chem. Phys. Lett., Volume 305 ( May 1999 ), pp. 225-229
[147] Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry, Phys. Rev. B, Volume 53 ( May 1996 ), pp. 13824-13829
[148] Plasmon spectroscopy of free-standing graphene films, Phys. Rev. B, Volume 77 ( June 2008 ), pp. 1-4
[149] Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer, Europhys. Lett., Volume 97 ( Mar. 2012 ), p. 57005
[150] High-energy collective electronic excitations in free-standing single-layer graphene, Phys. Rev. B, Volume 88 ( Aug. 2013 ), p. 075433
[151] Atom-by-atom spectroscopy at graphene edge, Nature, Volume 468 ( Dec. 2010 ), pp. 1088-1090
[152] Direct experimental evidence of metal-mediated etching of suspended graphene, ACS Nano, Volume 6 ( May 2012 ), pp. 4063-4071
[153] Direct visualization of reversible dynamics in a Si cluster embedded in a graphene pore, Nat. Commun., Volume 4 ( Jan. 2013 ), p. 1650
[154] Single atom identification by energy dispersive X-ray spectroscopy, Appl. Phys. Lett., Volume 100 ( Apr. 2012 ), p. 154101 (4 pp.)
[155] Chemically cleaved graphite support films for electron microscopy, J. Cell Biol., Volume 39 (1968) no. 3, pp. 733-735
[156] Thin graphite support films for high resolution electron microscopy, Micron (1969), Volume 8 (1977) no. 1–2, pp. 41-46
[157] Encapsulated C60 in carbon nanotubes, Nature, Volume 396 ( Nov. 1998 ), pp. 323-324
[158] Two-dimensional coalescence dynamics of encapsulated metallofullerenes in carbon nanotubes, ACS Nano, Volume 5 ( Dec. 2011 ), pp. 10084-10089
[159] One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett., Volume 85 ( Dec. 2000 ), pp. 5384-5387
[160] Electron diffraction study of one-dimensional crystals of fullerenes, Phys. Rev. B, Volume 64 ( Aug. 2001 ), p. 115420
[161] Molecular motion of endohedral fullerenes in single-walled carbon nanotubes, Angew. Chem., Int. Ed. Engl., Volume 43 ( Mar. 2004 ), pp. 1386-1389
[162] Molecules in carbon nanotubes, Acc. Chem. Res., Volume 38 ( Dec. 2005 ), pp. 901-909
[163] Carbon nanotubes: From nano test tube to nano-reactor, ACS Nano, Volume 5 ( Dec. 2011 ), pp. 9306-9312
[164] Encapsulation of single-molecule magnets in carbon nanotubes, Nat. Commun., Volume 2 ( Jan. 2011 ), p. 407
[165] Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT, Chem. Phys. Lett., Volume 383 ( Jan. 2004 ), pp. 362-367
[166] Azafullerenes encapsulated within single-walled carbon nanotubes, J. Am. Chem. Soc., Volume 130 ( May 2008 ), pp. 6062-6063
[167] Chemical reactions inside single-walled carbon nano test-tubes, Cambridge, England ( Jan. 2005 ), pp. 37-39
[168] Dynamics of carbon nanotube growth from fullerenes, Nano Lett., Volume 7 ( Aug. 2007 ), pp. 2428-2434
[169] A catalytic reaction inside a single-walled carbon nanotube, Adv. Mater., Volume 20 ( Apr. 2008 ), pp. 1443-1449
[170] Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale, Nat. Chem., Volume 3 ( Aug. 2011 ), pp. 732-737
[171] Observations of chemical reactions at the atomic scale: dynamics of metal-mediated fullerene coalescence and nanotube rupture, Angew. Chem., Int. Ed. Engl., Volume 49 ( Jan. 2010 ), pp. 193-196
[172] Electronic structure of carbon nanotubes with ultrahigh curvature, ACS Nano, Volume 4 ( Aug. 2010 ), pp. 4515-4522
[173] Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature, Volume 372 ( Dec. 1994 ), pp. 761-765
[174] Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science, Volume 289 ( Aug. 2000 ), pp. 1324-1326
[175] Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy, Acc. Chem. Res., Volume 35 (2002) no. 12, pp. 1054-1062
[176] Prevention of Sn and Pb crystallization in a confined nanospace, Small, Volume 6 ( June 2010 ), pp. 1279-1282 (Weinheim an der Bergstrasse, Germany)
[177] Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube, Nat. Mater., Volume 10 ( Sept. 2011 ), pp. 687-692
[178] Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube, Phys. Rev. Lett., Volume 90 ( May 2003 ), p. 187401
[179] Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires, Nano Lett., Volume 6 ( June 2006 ), pp. 1136-1140
[180] Imaging of single organic molecules in motion, Science, Volume 316 ( May 2007 ), p. 853
[181] Stability and dynamics of small molecules trapped on graphene, Phys. Rev. B, Volume 82 ( Oct. 2010 ), pp. 1-6
[182] Motion of light adatoms and molecules on the surface of few-layer graphene, ACS Nano ( Nov. 2011 )
[183] The application of graphene as a sample support in transmission electron microscopy, Solid State Commun., Volume 152 ( Apr. 2012 ), pp. 1375-1382
[184] Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene, J. Phys. Condens. Matter, Volume 24 ( Aug. 2012 ), p. 314213
[185] Direct imaging of a two-dimensional silica glass on graphene, Nano Lett., Volume 12 ( Feb. 2012 ), pp. 1081-1086
[186] Direct imaging of soft-hard interfaces enabled by graphene, Nano Lett., Volume 9 ( Sept. 2009 ), pp. 3365-3369
[187] Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy, ACS Nano, Volume 3 ( Sept. 2009 ), pp. 2547-2556
[188] Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy, ACS Nano, Volume 4 ( Jan. 2010 ), pp. 470-476
[189] Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy, Appl. Phys. Lett., Volume 97 ( Oct. 2010 ), p. 153102
[190] Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples, J. Struct. Biol., Volume 170 ( Apr. 2010 ), pp. 152-156
[191] Graphene: Substrate preparation and introduction, J. Struct. Biol., Volume 174 ( Apr. 2011 ), pp. 234-238
[192] Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM, Nano Lett., Volume 11 ( Oct. 2011 ), pp. 4319-4323
[193] Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes, Ultramicroscopy, Volume 111 (2011) no. 5, pp. 342-349
[194] Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples, Appl. Phys. Lett., Volume 99 (2011) no. 13, p. 133701
[195] A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies, Soft Matter, Volume 9 (2013) no. 14, p. 3741
[196] Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids, Biochim. Biophys. Acta, Volume 1830 ( June 2013 ), pp. 3807-3815
[197] Transformations of carbon adsorbates on graphene substrates under extreme heat, Nano Lett., Volume 11 ( Oct. 2011 ), pp. 5123-5127
[198] High-temperature stability of suspended single-layer graphene, Phys. Status Solidi RRL, Volume 4 ( Nov. 2010 ), pp. 302-304
[199] Direct transformation of graphene to fullerene, Nat. Chem., Volume 2 ( May 2010 ), pp. 450-453
[200] Impermeable graphenic encasement of bacteria, Nano Lett., Volume 11 ( Mar. 2011 ), pp. 1270-1275
[201] Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples, ACS Nano, Volume 5 ( Nov. 2011 ), pp. 10047-10054
[202] High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science, Volume 336 ( Apr. 2012 ), pp. 61-64
[203] The rise of graphene, Nat. Mater., Volume 6 ( Mar. 2007 ), pp. 183-191
[204] From atoms to grains: Transmission electron microscopy of graphene, Mater. Res. Soc. Bull., Volume 37 ( Nov. 2012 ), pp. 1214-1221
[205] Observational geology of graphene, at the nanoscale, ACS Nano, Volume 5 ( Mar. 2011 ), pp. 1569-1574
[206] Grain boundaries in graphene grown by chemical vapor deposition, New J. Phys., Volume 15 ( Mar. 2013 ), p. 035024
[207] Big Bang tomography as a new route to atomic-resolution electron tomography, Nature, Volume 486 ( June 2012 ), pp. 243-246
[208] A roadmap for graphene, Nature, Volume 490 ( Oct. 2012 ), pp. 192-200
[209] Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 30, pp. 10451-10453
[210] Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett., Volume 9 ( July 2009 ), pp. 2683-2689
[211] Fabrication of a freestanding boron nitride single layer and its defect assignments, Phys. Rev. Lett., Volume 102 ( May 2009 ), pp. 3-6
[212] Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science (New York, NY), Volume 331 ( Feb. 2011 ), pp. 568-571
[213] Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping, Phys. Rev. Lett., Volume 109 ( July 2012 ), p. 035503
Cité par Sources :
Commentaires - Politique