Comptes Rendus
Electron microscopy / Microscopie électronique
Using electron beams to investigate carbonaceous materials
[Apports de la microscopie électronique à l'étude des matériaux carbonés]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 241-257.

Cet article présente une brève revue des études réalisées en microscopie électronique sur des matériaux carbonés. Tous les aspects essentiels y sont abordés, depuis la préparation des échantillons jusqu'à l'imagerie et la spectroscopie à très haute résolution spatiale, en passant par les mesures conventionnelles de structure dans l'espace réel et dans l'espace réciproque. Un intérêt plus spécifique est cependant consacré aux développements les plus récents, incluant, d'une part, l'outil, à savoir la microscopie électronique à correction d'aberrations, et, d'autre part, l'objet d'étude le plus étudié aujourd'hui, à savoir la variété allotropique de basse dimension, le graphène.

This paper provides a brief review on electron microscopic studies of carbon materials. We discuss all aspects ranging from sample preparation via basics of the structure and its reciprocal space representation to high-resolution imaging and spectroscopy. Emphasis is given to recent developments, namely aberration-corrected electron microscopy and the newest low-dimensional carbon allotrope, graphene.

Publié le :
DOI : 10.1016/j.crhy.2013.10.011
Keywords: Carbon, Carbon nanotube, Graphene, High-resolution electron microscopy
Mot clés : Carbone, Nanotube de carbone, Graphène, Microscopie électronique à haute résolution
Clemens Mangler 1 ; Jannik C. Meyer 1

1 University of Vienna, Department of Physics, Boltzmanngasse 5, A-1090 Wien, Austria
@article{CRPHYS_2014__15_2-3_241_0,
     author = {Clemens Mangler and Jannik C. Meyer},
     title = {Using electron beams to investigate carbonaceous materials},
     journal = {Comptes Rendus. Physique},
     pages = {241--257},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.10.011},
     language = {en},
}
TY  - JOUR
AU  - Clemens Mangler
AU  - Jannik C. Meyer
TI  - Using electron beams to investigate carbonaceous materials
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 241
EP  - 257
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.10.011
LA  - en
ID  - CRPHYS_2014__15_2-3_241_0
ER  - 
%0 Journal Article
%A Clemens Mangler
%A Jannik C. Meyer
%T Using electron beams to investigate carbonaceous materials
%J Comptes Rendus. Physique
%D 2014
%P 241-257
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.10.011
%G en
%F CRPHYS_2014__15_2-3_241_0
Clemens Mangler; Jannik C. Meyer. Using electron beams to investigate carbonaceous materials. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 241-257. doi : 10.1016/j.crhy.2013.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.011/

[1] L. Radushkevich; V. Lukyanovich O strukture ugleroda obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zh. Fiz. Khim., Volume 26 (1952), p. 88

[2] H. Hashimoto; R. Uyeda Detection of dislocation by the moiré pattern in electron micrographs, Acta Crystallogr., Volume 10 ( Feb. 1957 ), p. 143

[3] I.M. Dawson; E.A.C. Follett An electron microscope study of synthetic graphite, Proc. R. Soc. Lond. Ser. A, Volume 253 (1959) no. 1274, pp. 390-402

[4] W. Bollmann Electron microscope study of radiation damage in graphite, J. Appl. Phys., Volume 32 (1961) no. 5, pp. 869-876

[5] F.E. Fujita; K. Izui Observation of lattice defects in graphite by electron microscopy. Part I, J. Phys. Soc. Jpn., Volume 16 (1961) no. 2, pp. 214-227

[6] J. Hedley; D. Ashworth Imperfections in natural graphite, J. Nucl. Mater., Volume 4 ( May 1961 ), pp. 70-78

[7] H. Boehm; A. Clauss; G. Fischer; U. Hofmann Surface properties of extremely thin graphite lamellae, Proceedings of the Fifth Conference on Carbon, vol. 1, 1962, pp. 73-80

[8] S. Iijima; T. Ichihashi Single-shell carbon nanotubes of 1-nm diameter, Nature, Volume 363 ( June 1993 ), pp. 603-605

[9] S. Iijima Helical microtubules of graphitic carbon, Nature, Volume 354 ( Nov. 1991 ), pp. 56-58

[10] D.S. Bethune; C.H. Klang; M.S. de Vries; G. Gorman; R. Savoy; J. Vazquez; R. Beyers Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, Volume 363 ( June 1993 ), pp. 605-607

[11] K.S. Novoselov; A.K. Geim; S.V. Morozov; D. Jiang; Y. Zhang; S.V. Dubonos; I.V. Grigorieva; A.A. Firsov Electric field effect in atomically thin carbon films, Science, Volume 306 ( Oct. 2004 ), pp. 666-669

[12] H.W. Kroto; A.W. Allaf; S.P. Balm C60: Buckminsterfullerene, Chem. Rev., Volume 91 (1991) no. 6, pp. 1213-1235

[13] B. Eksioglu; A. Nadarajah Structural analysis of conical carbon nanofibers, Carbon, Volume 44 ( Feb. 2006 ), pp. 360-373

[14] J. Campos-Delgado; J.M. Romo-Herrera; X. Jia; D.A. Cullen; H. Muramatsu; Y.A. Kim; T. Hayashi; Z. Ren; D.J. Smith; Y. Okuno; T. Ohba; H. Kanoh; K. Kaneko; M. Endo; H. Terrones; M.S. Dresselhaus; M. Terrones Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons, Nano Lett., Volume 8 ( Sept. 2008 ), pp. 2773-2778

[15] X. Jia; M. Hofmann; V. Meunier; B.G. Sumpter; J. Campos-Delgado; J.M. Romo-Herrera; H. Son; Y.-P. Hsieh; A. Reina; J. Kong; M. Terrones; M.S. Dresselhaus Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons, Science, Volume 323 ( Mar. 2009 ), pp. 1701-1705

[16] D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation, Nature, Volume 359 ( Oct. 1992 ), pp. 707-709

[17] Y. Saito; T. Yoshikawa; M. Inagaki; M. Tomita; T. Hayashi Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., Volume 204 ( Mar. 1993 ), pp. 277-282

[18] L.M. Viculis; J.J. Mack; R.B. Kaner A chemical route to carbon nanoscrolls, Science, Volume 299 ( Feb. 2003 ), p. 1361

[19] C. Jin; H. Lan; L. Peng; K. Suenaga; S. Iijima Deriving carbon atomic chains from graphene, Phys. Rev. Lett., Volume 102 ( May 2009 ), p. 205501

[20] A. Chuvilin; J.C. Meyer; G. Algara-Siller; U. Kaiser From graphene constrictions to single carbon chains, New J. Phys., Volume 11 ( Aug. 2009 ), p. 083019

[21] O. Cretu; A.R. Botello-Mendez; I. Janowska; C. Pham-Huu; J.-C. Charlier; F. Banhart Electrical transport measured in atomic carbon chains, Nano Lett. ( July 2013 )

[22] S. Subramoney Novel nanocarbons—structure, properties, and potential applications, Adv. Mater., Volume 10 (1998) no. 15, pp. 1157-1171

[23] K. Nagayama; R. Danev Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures, Biophys. Rev., Volume 1 ( Mar. 2009 ), pp. 37-42

[24] T. Hanai; M. Hibino; S. Maruse Improvement of an electron probe profile using the foil lens, Microscopy (Tokyo), Volume 31 ( Jan. 1982 ), pp. 360-367

[25] S. Sugiyama; M. Hibino; S. Maruse Transmission rate of electrons for carbon films used as the foil of the foil lens, Microscopy (Tokyo), Volume 33 ( Jan. 1984 ), pp. 323-328

[26] Z. Wang; P. Poncharal; W. de Heer Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM, J. Phys. Chem. Solids, Volume 61 ( July 2000 ), pp. 1025-1030

[27] Z.L. Wang; R.P. Gao; W.A. de Heer; P. Poncharal In situ imaging of field emission from individual carbon nanotubes and their structural damage, Appl. Phys. Lett., Volume 80 ( Feb. 2002 ), p. 856

[28] J. Cumings; A. Zettl; M. McCartney; J. Spence Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett., Volume 88 ( Jan. 2002 ), p. 056804

[29] N. de Jonge; Y. Lamy; K. Schoots; T.H. Oosterkamp High brightness electron beam from a multi-walled carbon nanotube, Nature, Volume 420 ( Nov. 2002 ), pp. 393-395

[30] J. Cumings; A. Zettl; M.R. McCartney Carbon nanotube electrostatic biprism: principle of operation and proof of concept, Microsc. Microanal., Volume 10 ( Aug. 2004 ), pp. 420-424

[31] A. Krueger; M. Ozawa; F. Banhart Carbon nanotubes as elements to focus electron beams by Fresnel diffraction, Appl. Phys. Lett., Volume 83 ( Dec. 2003 ), p. 5056

[32] T. Oku; I. Narita; A. Nishiwaki Formation, atomic structural optimization and electronic structures of tetrahedral carbon onion, Diam. Relat. Mater., Volume 13 ( Apr. 2004 ), pp. 1337-1341

[33] S. Iijima Carbon nanotubes: past, present, and future, Physica B, Condens. Matter, Volume 323 ( Oct. 2002 ), pp. 1-5

[34] J. Kotakoski; A.V. Krasheninnikov; U. Kaiser; J.C. Meyer From point defects in graphene to two-dimensional amorphous carbon, Phys. Rev. Lett., Volume 106 ( Mar. 2011 ), p. 105505

[35] P.J.F. Harris; Z. Liu; K. Suenaga Imaging the atomic structure of activated carbon, J. Phys. Condens. Matter, Volume 20 ( Sept. 2008 ), p. 362201

[36] V.H. Crespi; L.X. Benedict; M.L. Cohen; S.G. Louie Prediction of a pure-carbon planar covalent metal, Phys. Rev. B, Volume 53 ( May 1996 ), p. R13303-R13305

[37] X. Sheng; H. Cui; F. Ye; Q. Yan; Q. Zheng; G. Su Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys., Volume 112 ( Oct. 2012 ), p. 074315 (7 pp.)

[38] M.T. Lusk; L.D. Carr Nanoengineering defect structures on graphene, Phys. Rev. Lett., Volume 100 ( Apr. 2008 ), p. 175503

[39] H. Terrones; M. Terrones; E. Hernández; N. Grobert; J. Charlier; P.M. Ajayan New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett., Volume 84 ( Feb. 2000 ), pp. 1716-1719

[40] J. Hedley; D. Ashworth Imperfections in natural graphite, J. Nucl. Mater., Volume 4 ( May 1961 ), pp. 70-78

[41] M. Isaacson; M. Ohtsuki; M. Utlaut Can we determine the structure of thin amorphous film using scanning transmission electron microscopy, Proceedings of the 37th Annual EMSA Meeting, 1979, pp. 498-501

[42] M.S. Isaacson Seeing single atoms, Ultramicroscopy, Volume 123 ( Dec. 2012 ), pp. 3-12

[43] A.V. Crewe High-resolution scanning transmission electron microscopy, Science, Volume 221 ( July 1983 ), pp. 325-330

[44] A. Oberlin; M. Endo; T. Koyama Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, Volume 32 ( Mar. 1976 ), pp. 335-349

[45] J. Prasek; J. Drbohlavova; J. Chomoucka; J. Hubalek; O. Jasek; V. Adam; R. Kizek Methods for carbon nanotubes synthesis—review, J. Mater. Chem., Volume 21 ( Oct. 2011 ), pp. 15872-15884

[46] X. Wang; W. Hu; Y. Liu; C. Long; Y. Xu; S. Zhou; D. Zhu; L. Dai Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine, Carbon, Volume 39 ( Aug. 2001 ), pp. 1533-1536

[47] A.Y. Kasumov Supercurrents through single-walled carbon nanotubes, Science, Volume 284 ( May 1999 ), pp. 1508-1511

[48] M. Kociak; K. Suenaga; K. Hirahara; Y. Saito; T. Nakahira; S. Iijima Linking chiral indices and transport properties of double-walled carbon nanotubes, Phys. Rev. Lett., Volume 89 ( Sept. 2002 ), p. 155501

[49] A.M. Fennimore; T.D. Yuzvinsky; W.-Q. Han; M.S. Fuhrer; J. Cumings; A. Zettl Rotational actuators based on carbon nanotubes, Nature, Volume 424 ( July 2003 ), pp. 408-410

[50] J. Meyer; D. Obergfell; S. Roth; S. Yang Transmission electron microscopy and transistor characteristics of the same carbon nanotube, Appl. Phys. Lett., Volume 85 (2004) no. 14, p. 2911

[51] J.C. Meyer; M. Paillet; S. Roth Single-molecule torsional pendulum, Science, Volume 309 ( Sept. 2005 ), pp. 1539-1541

[52] J. Meyer; M. Paillet; T. Michel; A. Moréac; A. Neumann; G. Duesberg; S. Roth; J. Sauvajol Raman modes of index-identified freestanding single-walled carbon nanotubes, Phys. Rev. Lett., Volume 95 (2005) no. 21, p. 217401

[53] J.C. Meyer; M. Paillet; G.S. Duesberg; S. Roth Electron diffraction analysis of individual single-walled carbon nanotubes, Ultramicroscopy, Volume 106 ( Feb. 2006 ), pp. 176-190

[54] A. Jungen; S. Hofmann; J.C. Meyer; C. Stampfer; S. Roth; J. Robertson; C. Hierold Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining, J. Micromech. Microeng., Volume 17 (2007), pp. 603-608

[55] S. Helveg; C. López-Cartes; J. Sehested; P.L. Hansen; B.S. Clausen; J.R. Rostrup-Nielsen; F. Abild-Pedersen; J. Nørskov Atomic-scale imaging of carbon nanofibre growth, Nature, Volume 427 ( Jan. 2004 ), pp. 426-429

[56] R. Sharma; Z. Iqbal In situ observations of carbon nanotube formation using environmental transmission electron microscopy, Appl. Phys. Lett., Volume 84 ( Feb. 2004 ), p. 990

[57] S. Hofmann; R. Sharma; C. Ducati; G. Du; C. Mattevi; C. Cepek; M. Cantoro; S. Pisana; A. Parvez; F. Cervantes-Sodi; A.C. Ferrari; R. Dunin-Borkowski; S. Lizzit; L. Petaccia; A. Goldoni; J. Robertson In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation, Nano Lett., Volume 7 ( Mar. 2007 ), pp. 602-608

[58] J. Park; G. Choi; Y. Cho; S. Hong; D. Kim; S. Choi; J. Lee; K. Cho Characterization of Fe-catalyzed carbon nanotubes grown by thermal chemical vapor deposition, J. Cryst. Growth, Volume 244 ( Oct. 2002 ), pp. 211-217

[59] X. Ke; S. Bals; A. Romo Negreira; T. Hantschel; H. Bender; G. Van Tendeloo TEM sample preparation by FIB for carbon nanotube interconnects, Ultramicroscopy, Volume 109 ( Oct. 2009 ), pp. 1353-1359

[60] P. Blake; E.W. Hill; A.H. Castro Neto; K.S. Novoselov; D. Jiang; R. Yang; T.J. Booth; A.K. Geim Making graphene visible, Appl. Phys. Lett., Volume 91 ( Aug. 2007 ), p. 063124

[61] J. Meyer; A. Geim; M. Katsnelson; K. Novoselov; D. Obergfell; S. Roth; C. Girit; A. Zettl On the roughness of single- and bi-layer graphene membranes, Solid State Commun., Volume 143 ( July 2007 ), pp. 101-109

[62] J.C. Meyer; A.K. Geim; M.I. Katsnelson; K.S. Novoselov; T.J. Booth; S. Roth The structure of suspended graphene sheets, Nature, Volume 446 ( Mar. 2007 ), pp. 60-63

[63] T.J. Booth; P. Blake; R.R. Nair; D. Jiang; E.W. Hill; U. Bangert; A. Bleloch; M. Gass; K.S. Novoselov; M.I. Katsnelson; A.K. Geim Macroscopic graphene membranes and their extraordinary stiffness, Nano Lett., Volume 8 ( Aug. 2008 ), pp. 2442-2446

[64] R.R. Nair; P. Blake; A.N. Grigorenko; K.S. Novoselov; T.J. Booth; T. Stauber; N.M.R. Peres; A.K. Geim Fine structure constant defines visual transparency of graphene, Science, Volume 320 ( June 2008 ), p. 1308

[65] J.C. Meyer; C.O. Girit; M.F. Crommie; A. Zettl Hydrocarbon lithography on graphene membranes, Appl. Phys. Lett., Volume 92 ( Mar. 2008 ), pp. 123110-123113

[66] C. Gómez-Navarro; J.C. Meyer; R.S. Sundaram; A. Chuvilin; S. Kurasch; M. Burghard; K. Kern; U. Kaiser Atomic structure of reduced graphene oxide, Nano Lett., Volume 10 ( Apr. 2010 ), pp. 1144-1148

[67] K. Erickson; R. Erni; Z. Lee; N. Alem; W. Gannett; A. Zettl Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater., Volume 22 ( Aug. 2010 ), pp. 4467-4472

[68] D. Pacilé; J. Meyer; A. Fraile Rodríguez; M. Papagno; C. Gómez-Navarro; R. Sundaram; M. Burghard; K. Kern; C. Carbone; U. Kaiser Electronic properties and atomic structure of graphene oxide membranes, Carbon, Volume 49 ( Mar. 2011 ), pp. 966-972

[69] Q. Yu; J. Lian; S. Siriponglert; H. Li; Y.P. Chen; S. Pei Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett., Volume 93 ( Sept. 2008 ), p. 113103 (3 pp.)

[70] A. Reina; X. Jia; J. Ho; D. Nezich; H. Son; V. Bulovic; M.S. Dresselhaus; J. Kong Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., Volume 9 ( Jan. 2009 ), pp. 30-35

[71] X. Li; W. Cai; J. An; S. Kim; J. Nah; D. Yang; R. Piner; A. Velamakanni; I. Jung; E. Tutuc; S.K. Banerjee; L. Colombo; R.S. Ruoff Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, Volume 324 ( June 2009 ), pp. 1312-1314

[72] B. Alemán; W. Regan; S. Aloni; V. Altoe; N. Alem; C. Girit; B. Geng; L. Maserati; M. Crommie; F. Wang; A. Zettl Transfer-free batch fabrication of large-area suspended graphene membranes, ACS Nano, Volume 4 ( Aug. 2010 ), pp. 4762-4768

[73] H.J. Park; J.C. Meyer; S. Roth; V. Skakalova Growth and properties of few-layer graphene prepared by chemical vapor deposition, Carbon, Volume 48 (2010) no. 4, pp. 1088-1094

[74] Y.-C. Lin; C.-C. Lu; C.-H. Yeh; C. Jin; K. Suenaga; P.-W. Chiu Graphene annealing: How clean can it be?, Nano Lett., Volume 12 (2012) no. 1, pp. 414-419

[75] Y. Lin; C. Jin; J. Lee; S. Jen; K. Suenaga; P. Chiu Clean transfer of graphene for isolation and suspension, ACS Nano, Volume 5 ( Mar. 2011 ), pp. 2362-2368

[76] P.Y. Huang; C.S. Ruiz-Vargas; A.M. van der Zande; W.S. Whitney; M.P. Levendorf; J.W. Kevek; S. Garg; J.S. Alden; C.J. Hustedt; Y. Zhu; J. Park; P.L. McEuen; D.A. Muller Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, Volume 469 ( Jan. 2011 ), pp. 389-392

[77] S.J. Haigh; A. Gholinia; R. Jalil; S. Romani; L. Britnell; D.C. Elias; K.S. Novoselov; L.A. Ponomarenko; A.K. Geim; R. Gorbachev Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices, Nat. Mater., Volume 11 ( July 2012 ), pp. 9-12

[78] A. Ansaldo; M. Haluska; J. Cech; J. Meyer; D. Ricci; F. Gatti; E. Di Zitti; S. Cincotti; S. Roth A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates, Physica E, Low-Dimens. Syst. Nanostruct., Volume 37 (2007) no. 1–2, pp. 6-10

[79] M. Yu; O. Lourie; M.J. Dyer; K. Moloni; T.F. Kelly; R.S. Ruoff Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, Volume 287 ( Jan. 2000 ), pp. 637-640

[80] R.Y. Zhang; Y. Wei; L.A. Nagahara; I. Amlani; R.K. Tsui The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes, Nanotechnology, Volume 17 ( Jan. 2006 ), pp. 272-276

[81] M. Lucas; E. Mitchell The threshold curve for the displacement of atoms in graphite: Experiments on the resistivity changes produced in single crystals by fast electron irradiation at 15 K, Carbon, Volume 1 ( Apr. 1964 ), pp. 345-352

[82] V.H. Crespi; N.G. Chopra; M.L. Cohen; A. Zettl; S. Louie Anisotropic electron-beam damage and the collapse of carbon nanotubes, Phys. Rev. B Condens. Matter, Volume 54 ( Aug. 1996 ), pp. 5927-5931

[83] F. Banhart Irradiation effects in carbon nanostructures, Rep. Prog. Phys., Volume 62 (1999), p. 1181

[84] B.W. Smith; D.E. Luzzi Electron irradiation effects in single wall carbon nanotubes, J. Appl. Phys., Volume 90 ( Oct. 2001 ), pp. 3509-3515

[85] A. Krasheninnikov; F. Banhart; J. Li; A. Foster; R. Nieminen Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality, Phys. Rev. B, Volume 72 ( Sept. 2005 )

[86] A. Zobelli; A. Gloter; C. Ewels; G. Seifert; C. Colliex Electron knock-on cross section of carbon and boron nitride nanotubes, Phys. Rev. B, Volume 75 ( June 2007 ), pp. 1-9

[87] K. Mølhave; S.B. Gudnason; A.T. Pedersen; C.H. Clausen; A. Horsewell; P. Bøggild Electron irradiation-induced destruction of carbon nanotubes in electron microscopes, Ultramicroscopy, Volume 108 ( Dec. 2007 ), pp. 52-57

[88] J.H. Warner; F. Schäffel; G. Zhong; M.H. Rümmeli; B. Büchner; J. Robertson; G.A.D. Briggs Investigating the diameter-dependent stability of single-walled carbon nanotubes, ACS Nano, Volume 3 ( June 2009 ), pp. 1557-1563

[89] J.C. Meyer; F. Eder; S. Kurasch; V. Skakalova; J. Kotakoski; H.J. Park; S. Roth; A. Chuvilin; S. Eyhusen; G. Benner; A.V. Krasheninnikov; U. Kaiser Accurate measurement of electron beam induced displacement cross sections for single-layer graphene, Phys. Rev. Lett., Volume 108 ( May 2012 ), p. 196102

[90] A. Santana; A. Zobelli; J. Kotakoski; A. Chuvilin; E. Bichoutskaia Inclusion of radiation damage dynamics in high-resolution transmission electron microscopy image simulations: The example of graphene, Phys. Rev. B, Volume 87 ( Mar. 2013 ), p. 094110

[91] T.D. Yuzvinsky; A.M. Fennimore; W. Mickelson; C. Esquivias; A. Zettl Precision cutting of nanotubes with a low-energy electron beam, Appl. Phys. Lett., Volume 86 (2005) no. 5, p. 053109

[92] H. Sawada; T. Sasaki; F. Hosokawa; S. Yuasa; M. Terao; M. Kawazoe; T. Nakamichi; T. Kaneyama; Y. Kondo; K. Kimoto; K. Suenaga Higher-order aberration corrector for an image-forming system in a transmission electron microscope, Ultramicroscopy, Volume 110 ( July 2010 ), pp. 958-961

[93] U. Kaiser; J. Biskupek; J. Meyer; J. Leschner; L. Lechner; H. Rose; M. Stöger-Pollach; A. Khlobystov; P. Hartel; H. Müller; M. Haider; S. Eyhusen; G. Benner Transmission electron microscopy at 20 kV for imaging and spectroscopy, Ultramicroscopy, Volume 111 ( July 2011 ), pp. 1239-1246

[94] O.L. Krivanek; N. Dellby; M.F. Murfitt; M.F. Chisholm; T.J. Pennycook; K. Suenaga; V. Nicolosi Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy, Volume 110 ( July 2010 ), pp. 935-945

[95] J. Kotakoski; J.C. Meyer; S. Kurasch; D. Santos-Cottin; U. Kaiser; A.V. Krasheninnikov Stone–Wales-type transformations in carbon nanostructures driven by electron irradiation, Phys. Rev. B, Volume 83 ( June 2011 ), p. 245420

[96] C. Colliex; A. Gloter; K. March; C. Mory; O. Stéphan; K. Suenaga; M. Tencé Capturing the signature of single atoms with the tiny probe of a STEM, Ultramicroscopy, Volume 123 ( Dec. 2012 ), pp. 80-89

[97] A.V. Krasheninnikov; F. Banhart Engineering of nanostructured carbon materials with electron or ion beams, Nat. Mater., Volume 6 (2007) no. 10, pp. 723-733

[98] A. Zobelli; A. Gloter; C. Ewels; C. Colliex Shaping single walled nanotubes with an electron beam, Phys. Rev. B, Volume 77 ( Jan. 2008 ), pp. 1-8

[99] J.A. Rodriguez-Manzo; F. Banhart Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 A diameter, Nano Lett., Volume 9 ( June 2009 ), pp. 2285-2289

[100] M.D. Fischbein; M. Drndic Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett., Volume 93 ( Sept. 2008 ), p. 113107

[101] J. Li; F. Banhart The engineering of hot carbon nanotubes with a focused electron beam, Nano Lett., Volume 4 ( June 2004 ), pp. 1143-1146

[102] B. Song; G.F. Schneider; Q. Xu; G. Pandraud; C. Dekker; H. Zandbergen Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures, Nano Lett., Volume 11 ( June 2011 ), pp. 2247-2250

[103] F. Banhart; J. Li; M. Terrones Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes, Small, Volume 1 ( Oct. 2005 ), pp. 953-956

[104] Z. Lee; J. Meyer; H. Rose; U. Kaiser Optimum HRTEM image contrast at 20 kV and 80 kV-exemplified by graphene, Ultramicroscopy, Volume 112 ( Jan. 2012 ), pp. 39-46

[105] J.R. Jinschek; E. Yucelen; H.A. Calderon; B. Freitag Quantitative atomic 3-D imaging of single/double sheet graphene structure, Carbon, Volume 49 ( Feb. 2011 ), pp. 556-562

[106] A.A. Lucas; V. Bruyninckx; P. Lambin; D. Bernaerts; S. Amelinckx; J.V. Landuyt; G.V. Tendeloo Electron diffraction by carbon nanotubes, Scanning Microsc., Volume 12 (1998) no. 3, pp. 415-436

[107] A.A. Lucas; P. Lambin Diffraction by DNA, carbon nanotubes and other helical nanostructures, Rep. Prog. Phys., Volume 68 ( May 2005 ), pp. 1181-1249

[108] M. Gao; J.M. Zuo; R.D. Twesten; I. Petrov; L.A. Nagahara; R. Zhang Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction, Appl. Phys. Lett., Volume 82 (2003) no. 16, p. 2703

[109] X. Zhang; X. Zhang; S. Amelinckx; G. Van Tendeloo; J. Van Landuyt The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects, Ultramicroscopy, Volume 54 ( June 1994 ), pp. 237-249

[110] Z. Liu; L.-C. Qin A direct method to determine the chiral indices of carbon nanotubes, Chem. Phys. Lett., Volume 408 ( June 2005 ), pp. 75-79

[111] P. Lambin; A. Lucas Quantitative theory of diffraction by carbon nanotubes, Phys. Rev. B, Volume 56 ( Aug. 1997 ), pp. 3571-3574

[112] J.M. Zuo; I. Vartanyants; M. Gao; R. Zhang; L.A. Nagahara Atomic resolution imaging of a carbon nanotube from diffraction intensities, Science, Volume 300 ( May 2003 ), pp. 1419-1421

[113] C. Qin; L.-M. Peng Measurement accuracy of the diameter of a carbon nanotube from TEM images, Phys. Rev. B, Volume 65 ( Apr. 2002 ), pp. 1-7

[114] L.-C. Qin Electron diffraction from carbon nanotubes, Rep. Prog. Phys., Volume 69 ( Oct. 2006 ), pp. 2761-2821

[115] Z. Liu; L.-C. Qin Electron diffraction from elliptical nanotubes, Chem. Phys. Lett., Volume 406 ( Apr. 2005 ), pp. 106-110

[116] Z. Liu; L.-C. Qin Measurement of handedness in multiwalled carbon nanotubes by electron diffraction, Chem. Phys. Lett., Volume 411 ( Aug. 2005 ), pp. 291-296

[117] J.C. Meyer; S. Kurasch; H.J. Park; V. Skakalova; D. Künzel; A. Groß; A. Chuvilin; G. Algara-Siller; S. Roth; T. Iwasaki; U. Starke; J.H. Smet; U. Kaiser Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy, Nat. Mater., Volume 10 ( Mar. 2011 ), pp. 209-215

[118] K. Kim; Z. Lee; W. Regan; C. Kisielowski; M.F. Crommie; A. Zettl Grain boundary mapping in polycrystalline graphene, ACS Nano, Volume 5 ( Mar. 2011 ), pp. 2142-2146

[119] L. Brown; R. Hovden; P. Huang; M. Wojcik; D.A. Muller; J. Park Twinning and twisting of tri- and bilayer graphene, Nano Lett., Volume 12 ( Mar. 2012 ), pp. 1609-1615

[120] D. Kirilenko; A. Dideykin; G. Van Tendeloo Measuring the corrugation amplitude of suspended and supported graphene, Phys. Rev. B, Volume 84 ( Dec. 2011 ), p. 235417

[121] A.W. Tsen; L. Brown; M.P. Levendorf; F. Ghahari; P.Y. Huang; R.W. Havener; C.S. Ruiz-Vargas; D.A. Muller; P. Kim; J. Park Tailoring electrical transport across grain boundaries in polycrystalline graphene, Science (New York, NY), Volume 336 ( June 2012 ), pp. 1143-1146

[122] R.R. Meyer; S. Friedrichs; A.I. Kirkland; J. Sloan; J.L. Hutchison; M.L.H. Green A composite method for the determination of the chirality of single walled carbon nanotubes, J. Microsc., Volume 212 ( Nov. 2003 ), pp. 152-157

[123] A. Hashimoto; K. Suenaga; A. Gloter; K. Urita; S. Iijima Direct evidence for atomic defects in graphene layers, Nature, Volume 430 ( Aug. 2004 ), pp. 870-873

[124] M. Haider; S. Uhlemann; E. Schwan; H. Rose; B. Kabius; K. Urban Electron microscopy image enhanced, Nature, Volume 392 ( Apr. 1998 ), pp. 768-769

[125] P.E. Batson; N. Dellby; O.L. Krivanek Sub-ångstrom resolution using aberration corrected electron optics, Nature, Volume 418 ( Aug. 2002 ), pp. 617-620

[126] K. Suenaga; H. Wakabayashi; M. Koshino; Y. Sato; K. Urita; S. Iijima Imaging active topological defects in carbon nanotubes, Nat. Nanotechnol., Volume 2 ( June 2007 ), pp. 358-360

[127] J.C. Meyer; C.O. Girit; M.F. Crommie; A. Zettl Imaging and dynamics of light atoms and molecules on graphene, Nature, Volume 454 ( July 2008 ), pp. 319-322

[128] M.H. Gass; U. Bangert; A.L. Bleloch; P. Wang; R.R. Nair; A.K. Geim Free-standing graphene at atomic resolution, Nat. Nanotechnol., Volume 3 ( Nov. 2008 ), pp. 676-681

[129] J.C. Meyer; C. Kisielowski; R. Erni; M.D. Rossell; M.F. Crommie; A. Zettl Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Lett., Volume 8 ( Nov. 2008 ), pp. 3582-3586

[130] J.H. Warner; E.R. Margine; M. Mukai; A.W. Robertson; F. Giustino; A.I. Kirkland Dislocation-driven deformations in graphene, Science, Volume 337 ( July 2012 ), pp. 209-212

[131] O. Lehtinen; S. Kurasch; A.V. Krasheninnikov; U. Kaiser Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation, Nat. Commun., Volume 4 ( June 2013 ), p. 2098

[132] W. Zhou; M.D. Kapetanakis; M.P. Prange; S.T. Pantelides; S.J. Pennycook; J.-C. Idrobo Direct determination of the chemical bonding of individual impurities in graphene, Phys. Rev. Lett., Volume 109 ( Nov. 2012 ), p. 206803

[133] Q.M. Ramasse; C.R. Seabourne; D. Kepaptsoglou; R. Zan; U. Bangert; A.J. Scott Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett., Volume 13 (2013) no. 10, pp. 4989-4995

[134] H. Amara; S. Latil; V. Meunier; P. Lambin; J. Charlier Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction, Phys. Rev. B, Volume 76 ( Sept. 2007 ), p. 115423

[135] A. Stone; D. Wales Theoretical studies of icosahedral c60 and some related species, Chem. Phys. Lett., Volume 128 ( Aug. 1986 ), pp. 501-503

[136] G. Lee; C.Z. Wang; E. Yoon; N. Hwang; D. Kim; K.M. Ho Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers, Phys. Rev. Lett., Volume 95 ( Nov. 2005 ), p. 205501

[137] B.W. Jeong; J. Ihm; G. Lee Stability of dislocation defect with two pentagon–heptagon pairs in graphene, Phys. Rev. B, Volume 78 ( Oct. 2008 ), p. 1654

[138] J.H. Warner; M. Mukai; A.I. Kirkland Atomic structure of ABC rhombohedral stacked trilayer graphene, ACS Nano, Volume 6 ( June 2012 ), pp. 5680-5686

[139] O.L. Krivanek; M.F. Chisholm; V. Nicolosi; T.J. Pennycook; G.J. Corbin; N. Dellby; M.F. Murfitt; C.S. Own; Z.S. Szilagyi; M.P. Oxley; S.T. Pantelides; S.J. Pennycook Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature, Volume 464 ( Mar. 2010 ), pp. 571-574

[140] W. Zhou; J. Lee; J. Nanda; S.T. Pantelides; S.J. Pennycook; J. Idrobo Atomically localized plasmon enhancement in monolayer graphene, Nat. Nanotechnol., Volume 7 ( Mar. 2012 ), pp. 161-165

[141] R.J. Recep Zan; Quentin M. Ramasse; U. Bangert Advances in Graphene Science, InTech, July 2013

[142] S. Van Aert; D. Van Dyck; A.J. den Dekker Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative, Opt. Express, Volume 14 ( May 2006 ), p. 3830

[143] J. Fink Advances in Electronics and Electron Physics, vol. 75, Elsevier, 1989

[144] T. Pichler; M. Knupfer; M. Golden; J. Fink; A. Rinzler; R. Smalley Localized and delocalized electronic states in single-wall carbon nanotubes, Phys. Rev. Lett., Volume 80 ( May 1998 ), pp. 4729-4732

[145] R. Kuzuo; M. Terauchi; M. Tanaka Electron energy-loss spectra of carbon nanotubes, Jpn. J. Appl. Phys., Volume 31 ( Oct. 1992 ), p. L1484-L1487

[146] S. Tomita; M. Fujii; S. Hayashi; K. Yamamoto Electron energy-loss spectroscopy of carbon onions, Chem. Phys. Lett., Volume 305 ( May 1999 ), pp. 225-229

[147] O. Stéphan; P. Ajayan; C. Colliex; F. Cyrot-Lackmann; E. Sandré Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry, Phys. Rev. B, Volume 53 ( May 1996 ), pp. 13824-13829

[148] T. Eberlein; U. Bangert; R. Nair; R. Jones; M. Gass; A. Bleloch; K. Novoselov; A. Geim; P. Briddon Plasmon spectroscopy of free-standing graphene films, Phys. Rev. B, Volume 77 ( June 2008 ), pp. 1-4

[149] M.K. Kinyanjui; C. Kramberger; T. Pichler; J.C. Meyer; P. Wachsmuth; G. Benner; U. Kaiser Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer, Europhys. Lett., Volume 97 ( Mar. 2012 ), p. 57005

[150] P. Wachsmuth; R. Hambach; M.K. Kinyanjui; M. Guzzo; G. Benner; U. Kaiser High-energy collective electronic excitations in free-standing single-layer graphene, Phys. Rev. B, Volume 88 ( Aug. 2013 ), p. 075433

[151] K. Suenaga; M. Koshino Atom-by-atom spectroscopy at graphene edge, Nature, Volume 468 ( Dec. 2010 ), pp. 1088-1090

[152] Q.M. Ramasse; R. Zan; U. Bangert; D.W. Boukhvalov; Y.-W. Son; K.S. Novoselov Direct experimental evidence of metal-mediated etching of suspended graphene, ACS Nano, Volume 6 ( May 2012 ), pp. 4063-4071

[153] J. Lee; W. Zhou; S.J. Pennycook; J.-C. Idrobo; S.T. Pantelides Direct visualization of reversible dynamics in a Si cluster embedded in a graphene pore, Nat. Commun., Volume 4 ( Jan. 2013 ), p. 1650

[154] T.C. Lovejoy; Q.M. Ramasse; M. Falke; A. Kaeppel; R. Terborg; R. Zan; N. Dellby; O.L. Krivanek Single atom identification by energy dispersive X-ray spectroscopy, Appl. Phys. Lett., Volume 100 ( Apr. 2012 ), p. 154101 (4 pp.)

[155] W.H. Dobelle; M. Beer Chemically cleaved graphite support films for electron microscopy, J. Cell Biol., Volume 39 (1968) no. 3, pp. 733-735

[156] S. Iijima Thin graphite support films for high resolution electron microscopy, Micron (1969), Volume 8 (1977) no. 1–2, pp. 41-46

[157] B.W. Smith; M. Monthioux; D.E. Luzzi Encapsulated C60 in carbon nanotubes, Nature, Volume 396 ( Nov. 1998 ), pp. 323-324

[158] C.S. Allen; Y. Ito; A.W. Robertson; H. Shinohara; J.H. Warner Two-dimensional coalescence dynamics of encapsulated metallofullerenes in carbon nanotubes, ACS Nano, Volume 5 ( Dec. 2011 ), pp. 10084-10089

[159] K. Hirahara; K. Suenaga; S. Bandow; H. Kato; T. Okazaki; H. Shinohara; S. Iijima One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett., Volume 85 ( Dec. 2000 ), pp. 5384-5387

[160] K. Hirahara; S. Bandow; K. Suenaga; H. Kato; T. Okazaki; H. Shinohara; S. Iijima Electron diffraction study of one-dimensional crystals of fullerenes, Phys. Rev. B, Volume 64 ( Aug. 2001 ), p. 115420

[161] A.N. Khlobystov; K. Porfyrakis; M. Kanai; D.A. Britz; A. Ardavan; H. Shinohara; T.J.S. Dennis; G.A.D. Briggs Molecular motion of endohedral fullerenes in single-walled carbon nanotubes, Angew. Chem., Int. Ed. Engl., Volume 43 ( Mar. 2004 ), pp. 1386-1389

[162] A.N. Khlobystov; D.A. Britz; G.A.D. Briggs Molecules in carbon nanotubes, Acc. Chem. Res., Volume 38 ( Dec. 2005 ), pp. 901-909

[163] A.N. Khlobystov Carbon nanotubes: From nano test tube to nano-reactor, ACS Nano, Volume 5 ( Dec. 2011 ), pp. 9306-9312

[164] M.D.C. Giménez-López; F. Moro; A. La Torre; C.J. Gómez-García; P.D. Brown; J. van Slageren; A.N. Khlobystov Encapsulation of single-molecule magnets in carbon nanotubes, Nat. Commun., Volume 2 ( Jan. 2011 ), p. 407

[165] F. Simon; H. Kuzmany; H. Rauf; T. Pichler; J. Bernardi; H. Peterlik; L. Korecz; F. Fülöp; A. Jánossy Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT, Chem. Phys. Lett., Volume 383 ( Jan. 2004 ), pp. 362-367

[166] G. Pagona; G. Rotas; A.N. Khlobystov; T.W. Chamberlain; K. Porfyrakis; N. Tagmatarchis Azafullerenes encapsulated within single-walled carbon nanotubes, J. Am. Chem. Soc., Volume 130 ( May 2008 ), pp. 6062-6063

[167] D.A. Britz; A.N. Khlobystov; K. Porfyrakis; A. Ardavan; G.A.D. Briggs Chemical reactions inside single-walled carbon nano test-tubes, Cambridge, England ( Jan. 2005 ), pp. 37-39

[168] R. Pfeiffer; M. Holzweber; H. Peterlik; H. Kuzmany; Z. Liu; K. Suenaga; H. Kataura Dynamics of carbon nanotube growth from fullerenes, Nano Lett., Volume 7 ( Aug. 2007 ), pp. 2428-2434

[169] H. Shiozawa; T. Pichler; A. Grüneis; R. Pfeiffer; H. Kuzmany; Z. Liu; K. Suenaga; H. Kataura A catalytic reaction inside a single-walled carbon nanotube, Adv. Mater., Volume 20 ( Apr. 2008 ), pp. 1443-1449

[170] T.W. Chamberlain; J.C. Meyer; J. Biskupek; J. Leschner; A. Santana; N.A. Besley; E. Bichoutskaia; U. Kaiser; A.N. Khlobystov Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale, Nat. Chem., Volume 3 ( Aug. 2011 ), pp. 732-737

[171] A. Chuvilin; A.N. Khlobystov; D. Obergfell; M. Haluska; S. Yang; S. Roth; U. Kaiser Observations of chemical reactions at the atomic scale: dynamics of metal-mediated fullerene coalescence and nanotube rupture, Angew. Chem., Int. Ed. Engl., Volume 49 ( Jan. 2010 ), pp. 193-196

[172] W. Plank; R. Pfeiffer; C. Schaman; H. Kuzmany; M. Calvaresi; F. Zerbetto; J. Meyer Electronic structure of carbon nanotubes with ultrahigh curvature, ACS Nano, Volume 4 ( Aug. 2010 ), pp. 4515-4522

[173] C. Guerret-Piécourt; Y.L. Bouar; A. Lolseau; H. Pascard Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature, Volume 372 ( Dec. 1994 ), pp. 761-765

[174] R.R. Meyer; J. Sloan; R.E. Dunin-Burkowski; A.I. Kirkland; M.C. Novotny; S.R. Bailey; J.L. Hutchison; M.L.H. Green Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science, Volume 289 ( Aug. 2000 ), pp. 1324-1326

[175] J. Sloan; A. Kirkland; J. Hutchison Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy, Acc. Chem. Res., Volume 35 (2002) no. 12, pp. 1054-1062

[176] K. Kobayashi; K. Suenaga; T. Saito; S. Iijima Prevention of Sn and Pb crystallization in a confined nanospace, Small, Volume 6 ( June 2010 ), pp. 1279-1282 (Weinheim an der Bergstrasse, Germany)

[177] A. Chuvilin; E. Bichoutskaia; M.C. Gimenez-Lopez; T.W. Chamberlain; G.A. Rance; N. Kuganathan; J. Biskupek; U. Kaiser; A.N. Khlobystov Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube, Nat. Mater., Volume 10 ( Sept. 2011 ), pp. 687-692

[178] X. Zhao; Y. Ando; Y. Liu; M. Jinno; T. Suzuki Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube, Phys. Rev. Lett., Volume 90 ( May 2003 ), p. 187401

[179] J. Hu; Y. Bando; J. Zhan; C. Zhi; D. Golberg Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires, Nano Lett., Volume 6 ( June 2006 ), pp. 1136-1140

[180] M. Koshino; T. Tanaka; N. Solin; K. Suenaga; H. Isobe; E. Nakamura Imaging of single organic molecules in motion, Science, Volume 316 ( May 2007 ), p. 853

[181] R. Erni; M. Rossell; M.-T. Nguyen; S. Blankenburg; D. Passerone; P. Hartel; N. Alem; K. Erickson; W. Gannett; A. Zettl Stability and dynamics of small molecules trapped on graphene, Phys. Rev. B, Volume 82 ( Oct. 2010 ), pp. 1-6

[182] F. Schäffel; M. Wilson; J.H. Warner Motion of light adatoms and molecules on the surface of few-layer graphene, ACS Nano ( Nov. 2011 )

[183] R.S. Pantelic; J.C. Meyer; U. Kaiser; H. Stahlberg The application of graphene as a sample support in transmission electron microscopy, Solid State Commun., Volume 152 ( Apr. 2012 ), pp. 1375-1382

[184] W. Zhou; S.J. Pennycook; J.-C. Idrobo Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene, J. Phys. Condens. Matter, Volume 24 ( Aug. 2012 ), p. 314213

[185] P.Y. Huang; S. Kurasch; A. Srivastava; V. Skakalova; J. Kotakoski; A.V. Krasheninnikov; R. Hovden; Q. Mao; J.C. Meyer; J. Smet; D.A. Muller; U. Kaiser Direct imaging of a two-dimensional silica glass on graphene, Nano Lett., Volume 12 ( Feb. 2012 ), pp. 1081-1086

[186] Z. Lee; K.-J. Jeon; A. Dato; R. Erni; T.J. Richardson; M. Frenklach; V. Radmilovic Direct imaging of soft-hard interfaces enabled by graphene, Nano Lett., Volume 9 ( Sept. 2009 ), pp. 3365-3369

[187] N.R. Wilson; P.A. Pandey; R. Beanland; R.J. Young; I.A. Kinloch; L. Gong; Z. Liu; K. Suenaga; J.P. Rourke; S.J. York; J. Sloan Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy, ACS Nano, Volume 3 ( Sept. 2009 ), pp. 2547-2556

[188] J.H. Warner; M.H. Rümmeli; A. Bachmatiuk; M. Wilson; B. Büchner Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy, ACS Nano, Volume 4 ( Jan. 2010 ), pp. 470-476

[189] R.R. Nair; P. Blake; J.R. Blake; R. Zan; S. Anissimova; U. Bangert; A.P. Golovanov; S.V. Morozov; A.K. Geim; K.S. Novoselov; T. Latychevskaia Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy, Appl. Phys. Lett., Volume 97 ( Oct. 2010 ), p. 153102

[190] R.S. Pantelic; J.C. Meyer; U. Kaiser; W. Baumeister; J.M. Plitzko Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples, J. Struct. Biol., Volume 170 ( Apr. 2010 ), pp. 152-156

[191] R.S. Pantelic; J.W. Suk; C.W. Magnuson; J.C. Meyer; P. Wachsmuth; U. Kaiser; R.S. Ruoff; H. Stahlberg Graphene: Substrate preparation and introduction, J. Struct. Biol., Volume 174 ( Apr. 2011 ), pp. 234-238

[192] R.S. Pantelic; J.W. Suk; Y. Hao; R.S. Ruoff; H. Stahlberg Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM, Nano Lett., Volume 11 ( Oct. 2011 ), pp. 4319-4323

[193] D. Rhinow; M. Bueenfeld; N.-E. Weber; A. Beyer; A. Goelzhaeuser; W. Kuehlbrandt; N. Hampp; A. Turchanin Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes, Ultramicroscopy, Volume 111 (2011) no. 5, pp. 342-349

[194] D. Rhinow; N.-E. Weber; A. Turchanin; A. Gölzhäuser; W. Kühlbrandt Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples, Appl. Phys. Lett., Volume 99 (2011) no. 13, p. 133701

[195] M.A. Dyson; A.M. Sanchez; J.P. Patterson; R.K. O'Reilly; J. Sloan; N.R. Wilson A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies, Soft Matter, Volume 9 (2013) no. 14, p. 3741

[196] J. Jeon; M.S. Lodge; B.D. Dawson; M. Ishigami; F. Shewmaker; B. Chen Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids, Biochim. Biophys. Acta, Volume 1830 ( June 2013 ), pp. 3807-3815

[197] B. Westenfelder; J.C. Meyer; J. Biskupek; S. Kurasch; F. Scholz; C.E. Krill; U. Kaiser Transformations of carbon adsorbates on graphene substrates under extreme heat, Nano Lett., Volume 11 ( Oct. 2011 ), pp. 5123-5127

[198] K. Kim; W. Regan; B. Geng; B. Alemán; B.M. Kessler; F. Wang; M.F. Crommie; A. Zettl High-temperature stability of suspended single-layer graphene, Phys. Status Solidi RRL, Volume 4 ( Nov. 2010 ), pp. 302-304

[199] A. Chuvilin; U. Kaiser; E. Bichoutskaia; N.A. Besley; A.N. Khlobystov Direct transformation of graphene to fullerene, Nat. Chem., Volume 2 ( May 2010 ), pp. 450-453

[200] N. Mohanty; M. Fahrenholtz; A. Nagaraja; D. Boyle; V. Berry Impermeable graphenic encasement of bacteria, Nano Lett., Volume 11 ( Mar. 2011 ), pp. 1270-1275

[201] M. Krueger; S. Berg; D. Stone; E. Strelcov; D.A. Dikin; J. Kim; L.J. Cote; J. Huang; A. Kolmakov Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples, ACS Nano, Volume 5 ( Nov. 2011 ), pp. 10047-10054

[202] J.M. Yuk; J. Park; P. Ercius; K. Kim; D.J. Hellebusch; M.F. Crommie; J.Y. Lee; A. Zettl; A.P. Alivisatos High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science, Volume 336 ( Apr. 2012 ), pp. 61-64

[203] A.K. Geim; K.S. Novoselov The rise of graphene, Nat. Mater., Volume 6 ( Mar. 2007 ), pp. 183-191

[204] P.Y. Huang; J.C. Meyer; D.A. Muller From atoms to grains: Transmission electron microscopy of graphene, Mater. Res. Soc. Bull., Volume 37 ( Nov. 2012 ), pp. 1214-1221

[205] B.I. Yakobson; F. Ding Observational geology of graphene, at the nanoscale, ACS Nano, Volume 5 ( Mar. 2011 ), pp. 1569-1574

[206] L.P. Biró; P. Lambin Grain boundaries in graphene grown by chemical vapor deposition, New J. Phys., Volume 15 ( Mar. 2013 ), p. 035024

[207] D. Van Dyck; J.R. Jinschek; F.-R. Chen Big Bang tomography as a new route to atomic-resolution electron tomography, Nature, Volume 486 ( June 2012 ), pp. 243-246

[208] K.S. Novoselov; V.I. Falko; L. Colombo; P.R. Gellert; M.G. Schwab; K. Kim A roadmap for graphene, Nature, Volume 490 ( Oct. 2012 ), pp. 192-200

[209] K.S. Novoselov; D. Jiang; F. Schedin; T.J. Booth; V.V. Khotkevich; S.V. Morozov; A.K. Geim Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 30, pp. 10451-10453

[210] J.C. Meyer; A. Chuvilin; G. Algara-Siller; J. Biskupek; U. Kaiser Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett., Volume 9 ( July 2009 ), pp. 2683-2689

[211] C. Jin; F. Lin; K. Suenaga; S. Iijima Fabrication of a freestanding boron nitride single layer and its defect assignments, Phys. Rev. Lett., Volume 102 ( May 2009 ), pp. 3-6

[212] J.N. Coleman; M. Lotya; A. O'Neill; S.D. Bergin; P.J. King; U. Khan; K. Young; A. Gaucher; S. De; R.J. Smith; I.V. Shvets; S.K. Arora; G. Stanton; H.-Y. Kim; K. Lee; G.T. Kim; G.S. Duesberg; T. Hallam; J.J. Boland; J.J. Wang; J.F. Donegan; J.C. Grunlan; G. Moriarty; A. Shmeliov; R.J. Nicholls; J.M. Perkins; E.M. Grieveson; K. Theuwissen; D.W. McComb; P.D. Nellist; V. Nicolosi Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science (New York, NY), Volume 331 ( Feb. 2011 ), pp. 568-571

[213] H.-P. Komsa; J. Kotakoski; S. Kurasch; O. Lehtinen; U. Kaiser; A. Krasheninnikov Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping, Phys. Rev. Lett., Volume 109 ( July 2012 ), p. 035503

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements

Rodney S. Ruoff; Dong Qian; Wing Kam Liu

C. R. Phys (2003)


Nucleation and growth of SWNT: TEM studies of the role of the catalyst

Annick Loiseau; Julie Gavillet; François Ducastelle; ...

C. R. Phys (2003)


Coupled study by TEM/EELS and STM/STS of electronic properties of C- and CNx-nanotubes

Hong Lin; Jérôme Lagoute; Vincent Repain; ...

C. R. Phys (2011)