Magnetic phase transitions that involve multipolar degrees of freedom have been widely studied during the last couple of decades, challenging the common approximation which assumes that the physical properties of a magnetic material could be effectively described by purely dipolar degrees of freedom. Due to the complexity of the problem and to the large number of competing interactions involved, the simple (fcc) crystal structure of the actinide dioxides made them the ideal playground system for such theoretical and experimental studies. In the present paper, we summarize our recent attempts to provide an ab initio description of the ordered phases of UO2, NpO2, and AmO2 by means of state-of-the-art first-principles calculations. This systematic analysis of the electronic structures is here naturally connected to the local crystalline fields of the 5f states in the actinide dioxide series. Related to these we find that the mechanisms which lead to the experimentally observed insulating ground states work in distinctly different ways for each compound.
Les transitions de phases magnétiques impliquant des degrés de liberté multipolaires ont été beaucoup étudiées au cours des vingt dernières années, remettant en question l'approximation usuelle selon laquelle les propriétés physiques d'un matériau magnétique pourraient être convenablement décrites par des degrés de liberté purement dipolaires. Les problèmes à résoudre sont compliqués à cause du grand nombre d'interactions concurrentes concernées. C'est pour cette raison que les dioxydes d'actinides, avec leur structure cristallographique simple (cubique à faces centrées), représentent une classe de composés idéale pour aborder l'étude des ordres multipolaires, tant du point de vue théorique qu'expérimental. Dans cet article, nous résumons nos tentatives récentes, qui visent à fournir une description ab initio des phases ordonnées des composés UO2, NpO2, et AmO2 au moyen de calculs avancés. Cette analyse systématique de la structure électronique est ici intrinsèquement reliée au champ cristallin local qui détermine la composition des états 5f des ions actinides. Corrélativement à ceux-ci, nous mettons en évidence le fait que les mécanismes qui conduisent aux états fondamentaux isolants, observés expérimentalement, agissent de manière clairement différente pour chacun des composés de la série.
Mots-clés : Dioxydes d'actinides, Théorie $ \mathrm{LSDA}+\mathrm{U}$, Ordre multipolaire
Nicola Magnani 1; Michi-To Suzuki 2, 3; Peter M. Oppeneer 4
@article{CRPHYS_2014__15_7_580_0, author = {Nicola Magnani and Michi-To Suzuki and Peter M. Oppeneer}, title = {First-principles theory of multipolar order in actinide dioxides}, journal = {Comptes Rendus. Physique}, pages = {580--586}, publisher = {Elsevier}, volume = {15}, number = {7}, year = {2014}, doi = {10.1016/j.crhy.2014.07.003}, language = {en}, }
TY - JOUR AU - Nicola Magnani AU - Michi-To Suzuki AU - Peter M. Oppeneer TI - First-principles theory of multipolar order in actinide dioxides JO - Comptes Rendus. Physique PY - 2014 SP - 580 EP - 586 VL - 15 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2014.07.003 LA - en ID - CRPHYS_2014__15_7_580_0 ER -
Nicola Magnani; Michi-To Suzuki; Peter M. Oppeneer. First-principles theory of multipolar order in actinide dioxides. Comptes Rendus. Physique, Emergent phenomena in actinides, Volume 15 (2014) no. 7, pp. 580-586. doi : 10.1016/j.crhy.2014.07.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.07.003/
[1] Multipolar interactions in f-electron systems: the paradigm of actinide dioxides, Rev. Mod. Phys., Volume 81 (2009), p. 807
[2] Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions, Proc. Phys. Soc., Volume 65 (1952), p. 209
[3] Crystal Field Handbook, Cambridge University Press, Cambridge, UK, 2000
[4] Colloquium: hidden order, superconductivity, and magnetism: the unsolved case of , Rev. Mod. Phys., Volume 83 (2011), p. 1301
[5] Spin–lattice interaction in UO2. II. Theory of the first-order phase transition, Phys. Rev., Volume 167 (1968), p. 492
[6] Neutron diffraction study of UO2: antiferromagnetic state, Phys. Rev. B, Volume 14 (1976), p. 1151
[7] Theoretical analysis of the 3-k magnetic structure and distortion of uranium dioxide, J. Magn. Magn. Mater., Volume 67 (1987), p. 75
[8] 5f-electron states in uranium dioxide investigated using high-resolution neutron spectroscopy, Phys. Rev. B, Volume 40 (1989), p. 1856
[9] Magnetic excitations and dynamical Jahn–Teller distortions in UO2, Phys. Rev. B, Volume 59 (1999), p. 13892
[10] Direct observation of electric-quadrupolar order in UO2, Phys. Rev. B, Volume 73 (2006), p. 060406
[11] Multipolar, magnetic, and vibrational lattice dynamics in the low-temperature phase of uranium dioxide, Phys. Rev. B, Volume 84 (2011), p. 104409
[12] Magnetic-octupole order in neptunium dioxide?, Phys. Rev. Lett., Volume 85 (2000), p. 2188
[13] Triple-q octupolar ordering in NpO2, Phys. Rev. Lett., Volume 89 (2002), p. 187202
[14] Octupolar ordering of ions in a magnetic field, Phys. Rev. B, Volume 68 (2003), p. 174425
[15] Hidden order and low-energy excitations in NpO2, Phys. Rev. Lett., Volume 97 (2006), p. 207203
[16] Inelastic neutron scattering study of the multipolar order parameter in NpO2, Phys. Rev. B, Volume 78 (2008), p. 104425
[17] First-principles theory of multipolar order in neptunium dioxide, Phys. Rev. B, Volume 82 (2010), p. 241103
[18] Microscopic theory of the insulating electronic ground states of the actinide dioxides AnO2 (An = U, Np, Pu, Am, and Cm), Phys. Rev. B., Volume 88 (2013), p. 195146
[19] Nonmagnetic ground state of PuO2, Phys. Rev. B, Volume 89 (2014), p. 041109
[20] Crystal field and magnetic structure of UO2, Phys. Rev. B, Volume 83 (2011), p. 085106
[21] Coupling of multi-LO phonons to crystal-field excitations in UO2 studied by Raman spectroscopy, J. Phys. Condens. Matter, Volume 20 (2008), p. 085202
[22] Magnetic structure and electric-field gradients of uranium dioxide: an ab initio study, Phys. Rev. B, Volume 69 (2004), p. 140408
[23] First-order phase transition in UO2: and NMR study, Phys. Rev. B, Volume 63 (2001), p. 104404
[24] Quadrupolar waves in uranium dioxide, Phys. Rev. Lett., Volume 105 (2010), p. 167201
[25] Multipole decomposition of energy and its application to actinide compounds, Phys. Rev. B, Volume 80 (2009), p. 035121
[26] Calculation of multipolar exchange interactions in spin–orbital coupled systems, Phys. Rev. Lett., Volume 112 (2014), p. 077203
[27] Magnetic properties, The Chemistry of the Actinide and Transactinide Elements, vol. 4, Springer, The Netherlands, 2011
[28] NMR evidence for the 8.5 K phase transition in americium dioxide, J. Phys. Soc. Jpn., Volume 79 (2010), p. 053705
[29] Perturbative approach to J mixing in f-electron systems: application to actinide dioxides, Phys. Rev. B, Volume 71 (2005), p. 054405
[30] Electron-paramagnetic-resonance investigations of configuration ions in cubic single crystals: Pu3+ in ThO2 and SrCl2, and Am4+ in ThO2, Phys. Rev. B, Volume 3 (1971), p. 2864
[31] Microscopic analysis of multipole susceptibility of actinide dioxides: a scenario of multipole ordering in AmO2, Phys. Rev. B, Volume 80 (2009), p. 024408
[32] Self-radiation effects and glassy nature of magnetic transition in AmO2 revealed by -NMR, Phys. Rev. B, Volume 89 (2014), p. 214416
Cited by Sources:
Comments - Policy