Comptes Rendus
Structural properties of solid foams
Comptes Rendus. Physique, Liquid and solid foams / Mousses liquides et solides, Volume 15 (2014) no. 8-9, pp. 696-704.

The low density of foams is responsible for their high specific mechanical properties. Classical models describing the structural properties of solid foams are functions of the foam density. The exponent of the scaling law used to describe the evolution of the properties with density is a key parameter in order to optimise the foam for a given application. This exponent is generally assumed to correspond to particular local deformation mechanisms. Nevertheless, the underlying models are based on ideal foams. A finer description of the foam, taking into account the real architecture, the structural heterogeneities, and the constitutive material heterogeneity and defects, is required to explain and predict the behaviour of real foams.

La faible densité d'une mousse est responsable de ses hautes propriétés mécaniques spécifiques. Les modèles classiques décrivant les propriétés structurales des mousses solides sont fonctions de la densité de celles-ci. L'exposant de la loi d'échelle utilisée pour décrire l'évolution des propriétés en fonction de la densité constitue un paramètre clé pour l'optimisation de la mousse en vue d'une application donnée. Cet exposant est généralement supposé correspondre à des mécanismes de déformation particuliers. Néanmoins, les modèles sous-jacents envisagent des mousses idéales. Une description plus fine de la mousse, tenant compte de son architecture réelle, de ses hétérogénéités structurales, ainsi que de l'hétérogénéité et des défauts du matériau constitutif, est nécessaire pour expliquer et prédire le comportement des mousses réelles.

Published online:
DOI: 10.1016/j.crhy.2014.09.003
Keywords: Foams, Structural properties, Scaling laws
Mots-clés : Mousses, Propriétés structurales, Lois d'échelle

Pierre Lhuissier 1, 2

1 Univ. Grenoble Alpes, SIMAP, F 38000 Grenoble, France
2 CNRS, SIMAP, F 38000 Grenoble, France
@article{CRPHYS_2014__15_8-9_696_0,
     author = {Pierre Lhuissier},
     title = {Structural properties of solid foams},
     journal = {Comptes Rendus. Physique},
     pages = {696--704},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.09.003},
     language = {en},
}
TY  - JOUR
AU  - Pierre Lhuissier
TI  - Structural properties of solid foams
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 696
EP  - 704
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.09.003
LA  - en
ID  - CRPHYS_2014__15_8-9_696_0
ER  - 
%0 Journal Article
%A Pierre Lhuissier
%T Structural properties of solid foams
%J Comptes Rendus. Physique
%D 2014
%P 696-704
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.09.003
%G en
%F CRPHYS_2014__15_8-9_696_0
Pierre Lhuissier. Structural properties of solid foams. Comptes Rendus. Physique, Liquid and solid foams / Mousses liquides et solides, Volume 15 (2014) no. 8-9, pp. 696-704. doi : 10.1016/j.crhy.2014.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.09.003/

[1] B. Smith; S. Szyniszewski; J. Hajjar; B. Schafer; S. Arwade Steel foam for structures: a review of applications, manufacturing and material properties, J. Constr. Steel Res., Volume 71 (2012), pp. 1-10

[2] P. Lhuissier Random hollow spheres stackings: structure, behaviour and integration into sandwich structures, Institut polytechnique de Grenoble, Grenoble University, France, 2009 (Ph.D. thesis)

[3] E. Andrews; J.-S. Huang; L. Gibson Creep behavior of a closed-cell aluminum foam, Acta Mater., Volume 47 (1999) no. 10, pp. 2927-2935

[4] S. Soubielle; F. Diologent; L. Salvo; A. Mortensen Creep of replicated microcellular aluminium, Acta Mater., Volume 59 (2011) no. 2, pp. 440-450

[5] R. Mueller; S. Soubielle; R. Goodall; F. Diologent; A. Mortensen On the steady-state creep of microcellular metals, Scr. Mater., Volume 57 (2007) no. 1, pp. 33-36

[6] O. Caty; E. Maire; T. Douillard; P. Bertino; R. Dejaeger; R. Bouchet Experimental determination of the macroscopic fatigue properties of metal hollow sphere structures, Mater. Lett., Volume 63 (2009) no. 13–14, pp. 1131-1134

[7] C. Motz; O. Friedl; R. Pippan Fatigue crack propagation in cellular metals, Int. J. Fatigue, Volume 27 (2005) no. 10–12, pp. 1571-1581

[8] M.F. Ashby; A. Evans; N.A. Fleck; L.J. Gibson; J.W. Hutchinson; H.N. Wadley Metal foams: a design guide, Mater. Des., Volume 23 (2002) no. 1, p. 119

[9] R. Goodall; A. Mortensen (Physical Metallurgy), Volume vol. 7, Elsevier (2014), pp. 2399-2595

[10] L. Gibson; M. Ashby Cellular Solids, Structure and Properties, Cambridge University Press, Cambridge, 1997

[11] V. Deshpande; N. Fleck; M. Ashby Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids, Volume 49 (2001), pp. 1747-1769

[12] E. Andrews; G. Gioux; P. Onck; L. Gibson Size effects in ductile cellular solids. Part II: Experimental results, Int. J. Mech. Sci., Volume 43 (2001), pp. 701-713

[13] C. Tekoglu; L. Gibson; T. Pardoen; P. Onck Size effects in foams: experiments and modeling, Prog. Mater. Sci., Volume 56 (2011) no. 2, pp. 109-138

[14] K. Mangipudi; P. Onck Notch sensitivity of ductile metallic foams: a computational study, Acta Mater., Volume 59 (2011) no. 19, pp. 7356-7367

[15] P. Onck Application of a continuum constitutive model to metallic foam DEN-specimens in compression, Int. J. Mech. Sci., Volume 43 (2001) no. 12, pp. 2947-2959

[16] E. Combaz; A. Rossoll; A. Mortensen Hole and notch sensitivity of aluminium replicated foam, Acta Mater., Volume 59 (2011) no. 2, pp. 572-581

[17] A. Mortensen; Y. Conde; A. Rossoll; C. San Marchi Scaling of conductivity and Young's modulus in replicated microcellular materials, J. Mater. Sci., Volume 48 (2013) no. 23, pp. 8140-8146

[18] A. Fallet; P. Lhuissier; L. Salvo; C. Martin; A. Wiegmann; M. Kabel Multifunctional optimization of random hollow sphere stackings, Scr. Mater., Volume 68 (2012) no. 1, pp. 35-38

[19] P. Schüler; S.F. Fischer; A. Bührig-Polaczek; C. Fleck Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading, Mater. Sci. Eng. A, Volume 587 (2013), pp. 250-261

[20] Y. Conde; R. Doglione; A. Mortensen Influence of microstructural heterogeneity on the scaling between flow stress and relative density in microcellular Al–4.5 %Cu, J. Mater. Sci., Volume 49 (2014) no. 6, pp. 2403-2414

[21] T. Zhang; É. Maire; J. Adrien; P.R. Onck; L. Salvo Local tomography study of the fracture of an ERG metal foam, Adv. Eng. Mater., Volume 15 (2013) no. 8, pp. 767-772

[22] T. Ohgaki; H. Toda; M. Kobayashi; K. Uesugi; M. Niinomi; T. Akahori; T. Kobayash; K. Makii; Y. Aruga In situ observations of compressive behaviour of aluminium foams by local tomography using high-resolution X-rays, Philos. Mag., Volume 86 (2006) no. 28, pp. 4417-4438

Cited by Sources:

Comments - Policy