Comptes Rendus
On the creep deformation of nickel foams under compression
Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 705-718.

A finite-element computational strategy is developed to study the viscoplastic deformation mechanisms at work in a nickel foam sample under compression creep. The constitutive law for pure nickel accounts for both diffusional and dislocation creep mechanisms. The finite-element results show the competition between both mechanisms due to the strong heterogeneity of the stress distribution in the foam. The initiation of the viscoplastic buckling phenomenon leading to cell crushing in tertiary creep is illustrated. The overall model prediction is compared to the results of compression creep tests performed in vacuo at 900 °C.

Une stratégie de calcul par éléments finis a été développée dans le but d'étudier les mécanismes de déformation viscoplastique à l'oeuvre dans une mousse de nickel sous fluage en compression. La loi de comportement du nickel pur intègre à la fois les mécanismes de fluage diffusionnel et de fluage-dislocations. Les résultats des calculs par éléments finis font apparaître une compétition entre ces deux mécanismes du fait de la forte hétérogénéité de la distribution des contraintes dans la mousse. L'initiation du phénomène de flambage viscoplastique aboutissant à l'écrasement des cellules en fluage tertiaire est illustrée. La réponse globale obtenue à l'aide du modèle est comparée aux résultats d'essais de fluage en compression réalisés sous vide à 900 °C.

Published online:
DOI: 10.1016/j.crhy.2014.09.004
Keywords: Nickel foam, Creep, Microtomography, Open cell foam, Viscoplasticity, Buckling
Mot clés : Mousse de nickel, Fluage, Microtomographie, Mousse à cellules ouvertes, Viscoplasticté, Flambage
Anthony Burteau 1; Jean-Dominique Bartout 1; Yves Bienvenu 1; Samuel Forest 1

1 MINES ParisTech, Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Évry cedex, France
@article{CRPHYS_2014__15_8-9_705_0,
     author = {Anthony Burteau and Jean-Dominique Bartout and Yves Bienvenu and Samuel Forest},
     title = {On the creep deformation of nickel foams under compression},
     journal = {Comptes Rendus. Physique},
     pages = {705--718},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.09.004},
     language = {en},
}
TY  - JOUR
AU  - Anthony Burteau
AU  - Jean-Dominique Bartout
AU  - Yves Bienvenu
AU  - Samuel Forest
TI  - On the creep deformation of nickel foams under compression
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 705
EP  - 718
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.09.004
LA  - en
ID  - CRPHYS_2014__15_8-9_705_0
ER  - 
%0 Journal Article
%A Anthony Burteau
%A Jean-Dominique Bartout
%A Yves Bienvenu
%A Samuel Forest
%T On the creep deformation of nickel foams under compression
%J Comptes Rendus. Physique
%D 2014
%P 705-718
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.09.004
%G en
%F CRPHYS_2014__15_8-9_705_0
Anthony Burteau; Jean-Dominique Bartout; Yves Bienvenu; Samuel Forest. On the creep deformation of nickel foams under compression. Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 705-718. doi : 10.1016/j.crhy.2014.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.09.004/

[1] L.J. Gibson; M.F. Ashby Cellular Solids, Cambridge University Press, 1998

[2] O. Couteau; D.C. Dunand Creep of aluminum syntactic foams, Mater. Sci. Eng. A, Volume 488 (2008), pp. 573-579

[3] F. Diologent; Y. Conde; R. Goodally; A. Mortensen Microstructure, strength and creep of aluminium–nickel open cell foam, Philos. Mag., Volume 89 (2009), pp. 1121-1139

[4] S. Soubielle; F. Diologent; L. Salvo; A. Mortensen Creep of replicated microcellular aluminium, Acta Mater., Volume 59 (2011), pp. 440-450

[5] E.W. Andrews; L.J. Gibson The role of cellular structure in creep of two-dimensional cellular solids, Mater. Sci. Eng. A, Volume 303 (2001), pp. 120-126

[6] R. Mueller; S. Soubielle; R. Goodall; F. Diologent; A. Mortensen On the steady-state creep of microcellular metals, Scr. Mater., Volume 57 (2007), pp. 33-36

[7] S.M. Oppenheimer; D.C. Dunand Finite element modeling of creep deformation in cellular metals, Acta Mater., Volume 55 (2007), pp. 3825-3834

[8] R.K. Oruganti; A.K. Ghosh FEM analysis of transverse creep in honeycomb structures, Acta Mater., Volume 56 (2008), pp. 726-735

[9] V. Marcadon; F. Feyel Modelling of the compression behaviour of metallic hollow-sphere structures: about the influence of their architecture and their constitutive material's equations, Comput. Mater. Sci., Volume 47 (2009), pp. 599-610

[10] V. Marcadon Mechanical modelling of the creep behaviour of hollow-sphere structures, Comput. Mater. Sci., Volume 50 (2011), pp. 3005-3015

[11] A.C.F. Cocks; M.F. Ashby Creep-buckling of cellular solids, Acta Mater., Volume 48 (2000), pp. 3395-3400

[12] T.J. Chen; J.S. Huang Creep-rupturing of open-cell foams, Acta Mater., Volume 56 (2008), pp. 2283-2289

[13] T.J. Chen; J.S. Huang Creep-buckling of open-cell foams, Acta Mater., Volume 57 (2009), pp. 1497-1503

[14] T. Theile; H. Loewe; T.C. Theile; M. Schneebeli Simulating creep of snow based on microstructure and the anisotropic deformation of ice, Acta Mater., Volume 59 (2011), pp. 7104-7113

[15] X. Badiche; S. Forest; T. Guibert; Y. Bienvenu; J.-D. Bartout; P. Ienny; M. Croset; H. Bernet Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Mater. Sci. Eng. A, Volume 289 (2000), pp. 276-288

[16] T. Dillard; F. Nguyen; É. Maire; S. Forest; Y. Bienvenu; J.-D. Bartout; M. Croset; L. Salvo; R. Dendievel; P. Cloetens 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag., Volume 85 (2005), pp. 2147-2175

[17] V. Goussery; Y. Bienvenu; S. Forest; A.-F. Gourgues; C. Colin; J.-D. Bartout Grain size effect on the mechanical behavior of open-cell nickel foams, Adv. Eng. Mater., Volume 6 (2004), pp. 432-439

[18] M. Duchamp; J.D. Bartout; S. Forest; Y. Bienvenu; G. Walther; S. Saberi; A. Boehm Mechanical behavior of nickel base foams for diesel particle filter applications (H. Zhao; N.A. Fleck, eds.), IUTAM Symposium on Mechanical Properties of Cellular Materials, IUTAM Bookseries, vol. 12, 2009, pp. 51-67

[19] Y. Boonyongmaneerat; D.C. Dunand Effects of strut geometry and pore fraction on creep properties of cellular materials, Acta Mater., Volume 57 (2009), pp. 1373-1384

[20] H.S. Zurob; Y. Bréchet Effect of structure on the creep of open-cell nickel foams, J. Mater. Sci., Volume 40 (2005), pp. 5893-5901

[21] J.D. DeFouw; D.C. Dunand Processing and compressive creep of cast replicated IN792 Ni-base superalloy foams, Mater. Sci. Eng. A, Volume 558 (2012), pp. 129-133

[22] É. Maire; A. Fazékas; L. Salvo; R. Dendievel; S. Youssef; P. Cloetens; J.M. Letang X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Compos. Sci. Technol., Volume 63 (2003), pp. 2431-2443

[23] A.H. Benouali; L. Froyen; T. Dillard; S. Forest; F. Nguyen Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, J. Mater. Sci., Volume 40 (2005), pp. 5801-5811

[24] S. Youssef; É. Maire; R. Gaertner Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Mater., Volume 53 (2005), pp. 719-730

[25] O. Caty; É. Maire; S. Youssef; R. Bouchet Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements, Acta Mater., Volume 56 (2008), pp. 5524-5534

[26] A. Burteau; F. N'Guyen; J.D. Bartout; S. Forest; Y. Bienvenu; S. Saberi; D. Naumann Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams, Int. J. Solids Struct., Volume 49 (2012), pp. 2714-2732

[27] Z.G. Fan; C.Q. Chen; T.J. Lu Multiaxial creep of low density open-cell foams, Mater. Sci. Eng. A, Volume 540 (2012), pp. 83-88

[28] J.D. Bartout Determination of creep properties of pure nickel foams under compressive stress, Centre des matériaux, MINES ParisTech, 2008 (Technical report)

[29] D. François; A. Pineau; A. Zaoui Mechanical Behaviour of Materials. Volume 1: Micro and Macroscopic Constitutive Behaviour. Solid Mechanics and Its Applications, vol. 180, Springer, 2012

[30] H.J. Frost; M.F. Ashby Deformation–Mechanism Maps, the Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982

[31] V. Goussery Caractérisations microstructurale et mécanique de mousses de nickel à cellules ouvertes pour batteries de véhicule hybride, Ecole des mines de Paris, 2004 (PhD thesis)

[32] S. Karashim; H. Oikawa; T. Motomiya Steady-state creep characteristics of polycrystalline nickel in temperature range 500 C to 1000 C, Trans. Jpn. Inst. Met., Volume 10 (1969), pp. 205-215

[33] E.C. Norman; S.A. Duran Steady-state creep of pure polycrystalline nickel from 0.3 to 0.55 Tm, Acta Metall., Volume 18 (1970), pp. 723-732

[34] S. Perusin; B. Viguier; J.C. Salabura; D. Oquab; E. Andrieu Behaviour of the oxide scale during SEM in situ plastic deformation of pure nickel foil, Mater. Sci. Eng. A, Volume 387 (2004), pp. 763-767

[35] G. Cailletaud; K. Sai Study of plastic/viscoplastic models with various inelastic mechanisms, Int. J. Plast., Volume 11 (1995), pp. 991-1005

[36] J. Besson; G. Cailletaud; J.-L. Chaboche; S. Forest; M. Blétry Non-linear Mechanics of Materials, Solid Mechanics and Its Applications, vol. 167, Springer, 2009 (433 pp) (ISBN: 978-90-481-3355-0)

[37] C. Liu; A.M. Huntz; J.-L. Lebrun Origin and development of residual stresses in the Ni–NiO system: in-situ studies at high temperature by X-ray diffraction, Mater. Sci. Eng. A, Volume 160 (1993), pp. 113-126

[38] Z-set package, Non-linear material & structure analysis suite, www.zset-software.com, 2013.

[39] N. Limodin; L. Salvo; E. Boller; M. Suery; M. Felberbaum; S. Gailliegue; K. Madi In situ and real-time 3D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy, Acta Mater., Volume 57 (2009), pp. 2300-2310

[40] A. Hodge; D. Dunand Measurement and modelling of creep in open-cell NiAl foams, Metall. Mater. Trans. A, Volume 34 (2003), pp. 2353-2362

[41] S. Soubielle; L. Salvo; F. Diologent; A. Mortensen Fatigue and cyclic creep of replicated microcellular aluminium, Mater. Sci. Eng. A, Volume 528 (2011), pp. 2657-2663

[42] H. Choe; D.C. Dunand Synthesis, structure, and mechanical properties of Ni–Al and Ni–Cr–Al superalloy foams, Acta Mater., Volume 52 (2004), pp. 1283-1295

[43] H. Choe; D.C. Dunand Mechanical properties of oxidation-resistant Ni–Cr foams, Mater. Sci. Eng. A, Volume 384 (2004), pp. 184-193

[44] S. Forest; J.S. Blazy; Y. Chastel; F. Moussy Continuum modelling of strain localization phenomena in metallic foams, J. Mater. Sci., Volume 40 (2005), pp. 5903-5910

[45] T. Dillard; S. Forest; P. Ienny Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, Eur. J. Mech. A, Solids, Volume 25 (2006), pp. 526-549

Cited by Sources:

Comments - Policy


Articles of potential interest

Structural characterization of solid foams

Éric Maire; Jérôme Adrien; Clémence Petit

C. R. Phys (2014)


Structural properties of solid foams

Pierre Lhuissier

C. R. Phys (2014)


General introduction: Liquid and solid (materials, main properties and applications …)

Simon Zabler

C. R. Phys (2014)