A finite-element computational strategy is developed to study the viscoplastic deformation mechanisms at work in a nickel foam sample under compression creep. The constitutive law for pure nickel accounts for both diffusional and dislocation creep mechanisms. The finite-element results show the competition between both mechanisms due to the strong heterogeneity of the stress distribution in the foam. The initiation of the viscoplastic buckling phenomenon leading to cell crushing in tertiary creep is illustrated. The overall model prediction is compared to the results of compression creep tests performed in vacuo at 900 °C.
Une stratégie de calcul par éléments finis a été développée dans le but d'étudier les mécanismes de déformation viscoplastique à l'oeuvre dans une mousse de nickel sous fluage en compression. La loi de comportement du nickel pur intègre à la fois les mécanismes de fluage diffusionnel et de fluage-dislocations. Les résultats des calculs par éléments finis font apparaître une compétition entre ces deux mécanismes du fait de la forte hétérogénéité de la distribution des contraintes dans la mousse. L'initiation du phénomène de flambage viscoplastique aboutissant à l'écrasement des cellules en fluage tertiaire est illustrée. La réponse globale obtenue à l'aide du modèle est comparée aux résultats d'essais de fluage en compression réalisés sous vide à 900 °C.
Mots-clés : Mousse de nickel, Fluage, Microtomographie, Mousse à cellules ouvertes, Viscoplasticté, Flambage
Anthony Burteau 1; Jean-Dominique Bartout 1; Yves Bienvenu 1; Samuel Forest 1
@article{CRPHYS_2014__15_8-9_705_0, author = {Anthony Burteau and Jean-Dominique Bartout and Yves Bienvenu and Samuel Forest}, title = {On the creep deformation of nickel foams under compression}, journal = {Comptes Rendus. Physique}, pages = {705--718}, publisher = {Elsevier}, volume = {15}, number = {8-9}, year = {2014}, doi = {10.1016/j.crhy.2014.09.004}, language = {en}, }
TY - JOUR AU - Anthony Burteau AU - Jean-Dominique Bartout AU - Yves Bienvenu AU - Samuel Forest TI - On the creep deformation of nickel foams under compression JO - Comptes Rendus. Physique PY - 2014 SP - 705 EP - 718 VL - 15 IS - 8-9 PB - Elsevier DO - 10.1016/j.crhy.2014.09.004 LA - en ID - CRPHYS_2014__15_8-9_705_0 ER -
Anthony Burteau; Jean-Dominique Bartout; Yves Bienvenu; Samuel Forest. On the creep deformation of nickel foams under compression. Comptes Rendus. Physique, Liquid and solid foams / Mousses liquides et solides, Volume 15 (2014) no. 8-9, pp. 705-718. doi : 10.1016/j.crhy.2014.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.09.004/
[1] Cellular Solids, Cambridge University Press, 1998
[2] Creep of aluminum syntactic foams, Mater. Sci. Eng. A, Volume 488 (2008), pp. 573-579
[3] Microstructure, strength and creep of aluminium–nickel open cell foam, Philos. Mag., Volume 89 (2009), pp. 1121-1139
[4] Creep of replicated microcellular aluminium, Acta Mater., Volume 59 (2011), pp. 440-450
[5] The role of cellular structure in creep of two-dimensional cellular solids, Mater. Sci. Eng. A, Volume 303 (2001), pp. 120-126
[6] On the steady-state creep of microcellular metals, Scr. Mater., Volume 57 (2007), pp. 33-36
[7] Finite element modeling of creep deformation in cellular metals, Acta Mater., Volume 55 (2007), pp. 3825-3834
[8] FEM analysis of transverse creep in honeycomb structures, Acta Mater., Volume 56 (2008), pp. 726-735
[9] Modelling of the compression behaviour of metallic hollow-sphere structures: about the influence of their architecture and their constitutive material's equations, Comput. Mater. Sci., Volume 47 (2009), pp. 599-610
[10] Mechanical modelling of the creep behaviour of hollow-sphere structures, Comput. Mater. Sci., Volume 50 (2011), pp. 3005-3015
[11] Creep-buckling of cellular solids, Acta Mater., Volume 48 (2000), pp. 3395-3400
[12] Creep-rupturing of open-cell foams, Acta Mater., Volume 56 (2008), pp. 2283-2289
[13] Creep-buckling of open-cell foams, Acta Mater., Volume 57 (2009), pp. 1497-1503
[14] Simulating creep of snow based on microstructure and the anisotropic deformation of ice, Acta Mater., Volume 59 (2011), pp. 7104-7113
[15] Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Mater. Sci. Eng. A, Volume 289 (2000), pp. 276-288
[16] 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag., Volume 85 (2005), pp. 2147-2175
[17] Grain size effect on the mechanical behavior of open-cell nickel foams, Adv. Eng. Mater., Volume 6 (2004), pp. 432-439
[18] Mechanical behavior of nickel base foams for diesel particle filter applications (H. Zhao; N.A. Fleck, eds.), IUTAM Symposium on Mechanical Properties of Cellular Materials, IUTAM Bookseries, vol. 12, 2009, pp. 51-67
[19] Effects of strut geometry and pore fraction on creep properties of cellular materials, Acta Mater., Volume 57 (2009), pp. 1373-1384
[20] Effect of structure on the creep of open-cell nickel foams, J. Mater. Sci., Volume 40 (2005), pp. 5893-5901
[21] Processing and compressive creep of cast replicated IN792 Ni-base superalloy foams, Mater. Sci. Eng. A, Volume 558 (2012), pp. 129-133
[22] X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Compos. Sci. Technol., Volume 63 (2003), pp. 2431-2443
[23] Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, J. Mater. Sci., Volume 40 (2005), pp. 5801-5811
[24] Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Mater., Volume 53 (2005), pp. 719-730
[25] Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements, Acta Mater., Volume 56 (2008), pp. 5524-5534
[26] Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams, Int. J. Solids Struct., Volume 49 (2012), pp. 2714-2732
[27] Multiaxial creep of low density open-cell foams, Mater. Sci. Eng. A, Volume 540 (2012), pp. 83-88
[28] Determination of creep properties of pure nickel foams under compressive stress, Centre des matériaux, MINES ParisTech, 2008 (Technical report)
[29] Mechanical Behaviour of Materials. Volume 1: Micro and Macroscopic Constitutive Behaviour. Solid Mechanics and Its Applications, vol. 180, Springer, 2012
[30] Deformation–Mechanism Maps, the Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982
[31] Caractérisations microstructurale et mécanique de mousses de nickel à cellules ouvertes pour batteries de véhicule hybride, Ecole des mines de Paris, 2004 (PhD thesis)
[32] Steady-state creep characteristics of polycrystalline nickel in temperature range 500 C to 1000 C, Trans. Jpn. Inst. Met., Volume 10 (1969), pp. 205-215
[33] Steady-state creep of pure polycrystalline nickel from 0.3 to 0.55 , Acta Metall., Volume 18 (1970), pp. 723-732
[34] Behaviour of the oxide scale during SEM in situ plastic deformation of pure nickel foil, Mater. Sci. Eng. A, Volume 387 (2004), pp. 763-767
[35] Study of plastic/viscoplastic models with various inelastic mechanisms, Int. J. Plast., Volume 11 (1995), pp. 991-1005
[36] Non-linear Mechanics of Materials, Solid Mechanics and Its Applications, vol. 167, Springer, 2009 (433 pp) (ISBN: 978-90-481-3355-0)
[37] Origin and development of residual stresses in the Ni–NiO system: in-situ studies at high temperature by X-ray diffraction, Mater. Sci. Eng. A, Volume 160 (1993), pp. 113-126
[38] Z-set package, Non-linear material & structure analysis suite, www.zset-software.com, 2013.
[39] In situ and real-time 3D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy, Acta Mater., Volume 57 (2009), pp. 2300-2310
[40] Measurement and modelling of creep in open-cell NiAl foams, Metall. Mater. Trans. A, Volume 34 (2003), pp. 2353-2362
[41] Fatigue and cyclic creep of replicated microcellular aluminium, Mater. Sci. Eng. A, Volume 528 (2011), pp. 2657-2663
[42] Synthesis, structure, and mechanical properties of Ni–Al and Ni–Cr–Al superalloy foams, Acta Mater., Volume 52 (2004), pp. 1283-1295
[43] Mechanical properties of oxidation-resistant Ni–Cr foams, Mater. Sci. Eng. A, Volume 384 (2004), pp. 184-193
[44] Continuum modelling of strain localization phenomena in metallic foams, J. Mater. Sci., Volume 40 (2005), pp. 5903-5910
[45] Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, Eur. J. Mech. A, Solids, Volume 25 (2006), pp. 526-549
Cited by Sources:
Comments - Policy