Comptes Rendus
Effect of particles and aggregated structures on the foam stability and aging
Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 748-760.

Aqueous foams are formed of air bubbles dispersed in a water phase. Despite the simplicity of these ingredients, the resulting foams can have an impressive range of material properties. In this review, an overview will be given on recent results obtained on the foaming properties of particles, self-assembled and aggregated structures. We will highlight how the presence of objects inside the foam can drastically modify the foam stability from unstable to ultrastable.

Les mousses aqueuses sont formées de bulles d'air dispersées dans une phase aqueuse. En dépit de la simplicité de ces ingrédients, les mousses qui en résultent peuvent offrir une panoplie surprenante de propriétés physiques. Cet article passe en revue des résultats récents obtenus quant aux propriétés moussantes des particules, des structures auto-assemblées agrégées. On mettra en lumière comment la présence d'objets à l'intérieur de la mousse peut modifier de manière drastique la stabilité de celle-ci, d'instable à ultrastable.

Published online:
DOI: 10.1016/j.crhy.2014.09.009
Keywords: Foam, Stability, Aging, Particles, Protein aggregates, Surfactant aggregates
Mot clés : Mousse, Stabilité, Vieillissement, Particule, Agrégats de protéines, Agregats de tensioactifs

Anne-Laure Fameau 1; Anniina Salonen 2

1 Biopolymères Interactions Assemblages, INRA, rue de la Géraudière, 44316 Nantes, France
2 Laboratoire de physique des solides, UMR 8502, Université Paris-Sud, 91405 Orsay, France
@article{CRPHYS_2014__15_8-9_748_0,
     author = {Anne-Laure Fameau and Anniina Salonen},
     title = {Effect of particles and aggregated structures on the foam stability and aging},
     journal = {Comptes Rendus. Physique},
     pages = {748--760},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.09.009},
     language = {en},
}
TY  - JOUR
AU  - Anne-Laure Fameau
AU  - Anniina Salonen
TI  - Effect of particles and aggregated structures on the foam stability and aging
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 748
EP  - 760
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.09.009
LA  - en
ID  - CRPHYS_2014__15_8-9_748_0
ER  - 
%0 Journal Article
%A Anne-Laure Fameau
%A Anniina Salonen
%T Effect of particles and aggregated structures on the foam stability and aging
%J Comptes Rendus. Physique
%D 2014
%P 748-760
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.09.009
%G en
%F CRPHYS_2014__15_8-9_748_0
Anne-Laure Fameau; Anniina Salonen. Effect of particles and aggregated structures on the foam stability and aging. Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 748-760. doi : 10.1016/j.crhy.2014.09.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.09.009/

[1] I. Cantat et al. Les Mousses: Structure et Dynamique, Collection ”Échelles”, Belin, Paris, 2010

[2] D. Weaire; S. Hutzler The Physics of Foams, Oxford University Press, Oxford, UK, 1999

[3] A. Saint-Jalmes Physical chemistry in foam drainage and coarsening, Soft Matter, Volume 2 (2006), pp. 836-849

[4] D. Langevin; E. Rio Coalescence in foams and emulsions (P. Somasundaran, ed.), Encyclopedia of Surface and Colloid Science, Taylor and Francis, New York, 2006, pp. 1-15

[5] S. Hilgenfeldt; S.A. Koehler; H.A. Stone Dynamics of coarsening foams: accelerated and self-limiting drainage, Phys. Rev. Lett., Volume 86 (2001) no. 20, p. 4704

[6] V. Carrier; A. Colin Coalescence in draining foams, Langmuir, Volume 19 (2003) no. 11, pp. 4535-4538

[7] P. Garrett Recent developments in the understanding of foam generation and stability, Chem. Eng. Sci., Volume 48 (1993) no. 2, pp. 367-392

[8] D. Weaire; V. Pageron Frustrated froth: evolution of foam inhibited by an insoluble gaseous component, Philos. Mag. Lett., Volume 62 (1990) no. 6, pp. 417-421

[9] A. Webster; M. Cates Osmotic stabilization of concentrated emulsions and foams, Langmuir, Volume 17 (2001) no. 3, pp. 595-608

[10] M. Safouane et al. Aqueous foam drainage. Role of the rheology of the foaming fluid, J. Phys. IV, Volume 11 (2001) no. PR6, pp. 275-280

[11] M. Safouane et al. Viscosity effects in foam drainage: Newtonian and non-Newtonian foaming fluids, Eur. Phys. J. E, Volume 19 (2006) no. 2, pp. 195-202

[12] R. Tuinier et al. Transient foaming behavior of aqueous alcohol solutions as related to their dilational surface properties, J. Colloid Interface Sci., Volume 179 (1996) no. 2, pp. 327-334

[13] D. Langevin Influence of interfacial rheology on foam and emulsion properties, Adv. Colloid Interface Sci., Volume 88 (2000) no. 1–2, pp. 209-222

[14] N.D. Denkov et al. The role of surfactant type and bubble surface mobility in foam rheology, Soft Matter, Volume 5 (2009) no. 18, pp. 3389-3408

[15] S. Tcholakova et al. Control of Ostwald ripening by using surfactants with high surface modulus, Langmuir, Volume 27 (2011) no. 24, pp. 14807-14819

[16] B.S. Murray Stabilization of bubbles and foams, Curr. Opin. Colloid Interface Sci., Volume 12 (2007) no. 4, pp. 232-241

[17] A.-L. Fameau et al. Smart foams: switching reversibly between ultrastable and unstable foams, Angew. Chem., Int. Ed. Engl., Volume 50 (2011) no. 36, pp. 8264-8269

[18] A. Salonen et al. Solutions of surfactant oligomers: a model system for tuning foam stability by the surfactant structure, Soft Matter, Volume 6 (2010) no. 10, pp. 2271-2281

[19] P. Wierenga; H. Gruppen New views on foams from protein solutions, Curr. Opin. Colloid Interface Sci., Volume 15 (2010) no. 5, pp. 365-373

[20] B.S. Murray; R. Ettelaie Foam stability: proteins and nanoparticles, Curr. Opin. Colloid Interface Sci., Volume 9 (2004) no. 5, pp. 314-320

[21] T. Nicolai; M. Britten; C. Schmitt β-Lactoglobulin and WPI aggregates: formation, structure and applications, Food Hydrocoll., Volume 25 (2011) no. 8, pp. 1945-1962

[22] C. Schmitt; S.L. Turgeon Protein/polysaccharide complexes and coacervates in food systems, Adv. Colloid Interface Sci., Volume 167 (2011) no. 1, pp. 63-70

[23] A. Stocco et al. Aqueous foams stabilized solely by particles, Soft Matter, Volume 7 (2011) no. 4, pp. 1260-1267

[24] W. Kloek; T. van Vliet; M. Meinders Effect of bulk and interfacial rheological properties on bubble dissolution, J. Colloid Interface Sci., Volume 237 (2001) no. 2, pp. 158-166

[25] S. Tcholakova; N. Denkov; A. Lips Comparison of solid particles, globular proteins and surfactants as emulsifiers, Phys. Chem. Chem. Phys., Volume 10 (2008) no. 12, pp. 1608-1627

[26] C.A. Miller Antifoaming in aqueous foams, Curr. Opin. Colloid Interface Sci., Volume 13 (2008) no. 3, pp. 177-182

[27] N.D. Denkov Mechanisms of foam destruction by oil-based antifoams, Langmuir, Volume 20 (2004) no. 22, pp. 9463-9505

[28] S.I. Karakashev; M.V. Grozdanova Foams and antifoams, Adv. Colloid Interface Sci., Volume 176 (2012), pp. 1-17

[29] B.P. Binks Particles as surfactants—similarities and differences, Curr. Opin. Colloid Interface Sci., Volume 7 (2002) no. 1–2, pp. 21-41

[30] T.N. Hunter et al. The role of particles in stabilising foams and emulsions, Adv. Colloid Interface Sci., Volume 137 (2008) no. 2, pp. 57-81

[31] T.S. Horozov Foams and foam films stabilised by solid particles, Curr. Opin. Colloid Interface Sci., Volume 13 (2008) no. 3, pp. 134-140

[32] F.-Q. Tang et al. The effect of SiO2 particles upon stabilization of foam, J. Colloid Interface Sci., Volume 131 (1989) no. 2, pp. 498-502

[33] S. Fujii et al. Aqueous particulate foams stabilized solely with polymer latex particles, Langmuir, Volume 22 (2006) no. 18, pp. 7512-7520

[34] R.G. Alargova et al. Foam superstabilization by polymer microrods, Langmuir, Volume 20 (2004) no. 24, pp. 10371-10374

[35] R.M. Guillermic et al. Surfactant foams doped with laponite: unusual behaviors induced by aging and confinement, Soft Matter, Volume 5 (2009) no. 24, pp. 4975-4982

[36] J.S. Guevara et al. Stabilization of Pickering foams by high-aspect-ratio nano-sheets, Soft Matter, Volume 9 (2013) no. 4, pp. 1327-1336

[37] E. Vignati; R. Piazza; T.P. Lockhart Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion, Langmuir, Volume 19 (2003) no. 17, pp. 6650-6656

[38] D. Wasan; A. Nikolov Thin liquid films containing micelles or nanoparticles, Curr. Opin. Colloid Interface Sci., Volume 13 (2008) no. 3, pp. 128-133

[39] G. Sethumadhavan; A. Nikolov; D. Wasan Stability of films with nanoparticles, J. Colloid Interface Sci., Volume 272 (2004) no. 1, pp. 167-171

[40] C. Stubenrauch; R. von Klitzing Disjoining pressure in thin liquid foam and emulsion films—new concepts and perspectives, J. Phys. Condens. Matter, Volume 15 (2003) no. 27, p. R1197

[41] F. Carn et al. Foam drainage in the presence of nanoparticle–surfactant mixtures, Langmuir, Volume 25 (2009) no. 14, pp. 7847-7856

[42] E. Dickinson et al. Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles, Langmuir, Volume 20 (2004) no. 20, pp. 8517-8525

[43] T. Kostakis; R. Ettelaie; B.S. Murray Effect of high salt concentrations on the stabilization of bubbles by silica particles, Langmuir, Volume 22 (2006) no. 3, pp. 1273-1280

[44] L.R. Arriaga et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants, Soft Matter, Volume 8 (2012) no. 43, pp. 11085-11097

[45] U.T. Gonzenbach et al. Ultrastable particle-stabilized foams, Angew. Chem., Int. Ed. Engl., Volume 45 (2006) no. 21, pp. 3526-3530

[46] U.T. Gonzenbach et al. Processing of particle-stabilized wet foams into porous ceramics, J. Amer. Ceram. Soc., Volume 90 (2007) no. 11, pp. 3407-3414

[47] I. Lesov; S. Tcholakova; N. Denkov Drying of particle-loaded foams for production of porous materials: mechanism and theoretical modeling, RSC Adv., Volume 4 (2014) no. 2, pp. 811-823

[48] F. Krauss Juillerat; U.T. Gonzenbach; L.J. Gauckler Tailoring the hierarchical pore structures in self-setting particle-stabilized foams made from calcium aluminate cement, Mater. Lett., Volume 70 (2012), pp. 152-154

[49] K. Koczo; L. Lobo; D. Wasan Effect of oil on foam stability: aqueous foams stabilized by emulsions, J. Colloid Interface Sci., Volume 150 (1992) no. 2, pp. 492-506

[50] S. Cohen-Addad et al. Rigidity percolation in particle-laden foams, Phys. Rev. Lett., Volume 99 (2007) no. 16, p. 168001

[51] F. Rouyer et al. Transport of coarse particles in liquid foams: coupling of confinement and buoyancy effects, Soft Matter, Volume 7 (2011) no. 10, pp. 4812-4820

[52] N. Louvet; R. Höhler; O. Pitois Capture of particles in soft porous media, Phys. Rev. E, Volume 82 (2010) no. 4, p. 041405

[53] S. Guignot et al. Liquid and particles retention in foamed suspensions, Chem. Eng. Sci., Volume 65 (2010) no. 8, pp. 2579-2585

[54] J. Goyon et al. Shear induced drainage in foamy yield-stress fluids, Phys. Rev. Lett., Volume 104 (2010) no. 12, p. 128301

[55] A. Salonen et al. Dual gas and oil dispersions in water: production and stability of foamulsion, Soft Matter, Volume 8 (2012) no. 3, pp. 699-706

[56] P.R. Garrett; P.R. Moore Foam and dynamic surface properties of micellar alkyl benzene sulphonates, J. Colloid Interface Sci., Volume 159 (1993) no. 1, pp. 214-225

[57] J. Israelachvili Intermolecular and Surface Forces, London Academic Press limited, 1992 (450 p)

[58] S.G. Oh; D.O. Shah Relationship between micellar lifetime and foamability of sodium dodecyl-sulfate and sodium dodecyl-sulfate 1-hexanol mixtures, Langmuir, Volume 7 (1991) no. 7, pp. 1316-1318

[59] D. Varade et al. On the origin of the stability of foams made from catanionic surfactant mixtures, Soft Matter, Volume 7 (2011) no. 14, pp. 6557-6570

[60] A.-L. Fameau et al. Self-assembly, foaming, and emulsifying properties of sodium alkyl carboxylate/guanidine hydrochloride aqueous mixtures, Langmuir, Volume 27 (2011) no. 8, pp. 4505-4513

[61] B. Novales et al. Self-assembly of fatty acids and hydroxyl derivative salts, Langmuir, Volume 24 (2008) no. 1, pp. 62-68

[62] A.-L. Fameau; S. Lam; O.D. Velev Multi-stimuli responsive foams combining particles and self-assembling fatty acids, Chem. Sci., Volume 4 (2013) no. 10, pp. 3874-3881

[63] A.-L. Fameau et al. Foaming and emulsifying properties of fatty acids neutralized by tetrabutylammonium hydroxide, Colloids Surf. A, Physicochem. Eng. Asp., Volume 403 (2012), pp. 87-95

[64] C. Micheau et al. Specific salt and pH effects on foam film of a pH sensitive surfactant, Langmuir, Volume 29 (2013) no. 27, pp. 8472-8481

[65] M.A.V. Axelos; F. Boue Foams as viewed by small-angle neutron scattering, Langmuir, Volume 19 (2003) no. 17, pp. 6598-6604

[66] C. Curschellas et al. Foams stabilized by multilamellar polyglycerol ester self-assemblies, Langmuir, Volume 29 (2012) no. 1, pp. 38-49

[67] D. Varade et al. On the origin of the stability of foams made from catanionic surfactant mixtures, Soft Matter, Volume 7 (2011) no. 14, pp. 6557-6570

[68] E. Mileva; D. Exerowa Amphiphilic nanostructures in foam films, Curr. Opin. Colloid Interface Sci., Volume 13 (2008) no. 3, pp. 120-127

[69] A.-L. Fameau et al. Adsorption of multilamellar tubes with a temperature tunable diameter at the air/water interface, J. Colloid Interface Sci., Volume 362 (2011) no. 2, pp. 397-405

[70] D.J. McGillivray et al. Ordered structures of dichain cationic surfactants at interfaces, Langmuir, Volume 19 (2003) no. 19, pp. 7719-7726

[71] L.R. Arriaga et al. Adsorption, organization and rheology of catanionic layers at the air/water interface, Langmuir, Volume 29 (2013) no. 10, pp. 3214-3222

[72] A. Stocco et al. Interfacial behavior of catanionic surfactants, Langmuir, Volume 26 (2010) no. 13, pp. 10663-10669

[73] C. Curschellas et al. Interfacial aspects of the stability of polyglycerol ester covered bubbles against coalescence, Soft Matter, Volume 8 (2012) no. 46, pp. 11620-11631

[74] A.-L. Fameau; A. Saint-Jalmes Yielding and flow of solutions of thermoresponsive surfactant tubes: tuning macroscopic rheology by supramolecular assemblies, Soft Matter, Volume 10 (2014) no. 20, pp. 3622-3632

[75] T. Nicolai; D. Durand Controlled food protein aggregation for new functionality, Curr. Opin. Colloid Interface Sci., Volume 18 (2013) no. 4, pp. 249-256

[76] D. Oboroceanu et al. Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations, J. Food Eng., Volume 121 (2014), pp. 102-111

[77] A. Bals; U. Kulozik Effect of pre-heating on the foaming properties of whey protein isolate using a membrane foaming apparatus, Int. Dairy J., Volume 13 (2003) no. 11, pp. 903-908

[78] J. Davis; E.A. Foegeding Foaming and interfacial properties of polymerized whey protein isolate, J. Food Sci., Volume 69 (2004) no. 5, p. C404-C410

[79] P.A. Wierenga; L. van Norél; E.S. Basheva Reconsidering the importance of interfacial properties in foam stability, Colloids Surf. A, Physicochem. Eng. Asp., Volume 344 (2009) no. 1, pp. 72-78

[80] B. Rullier; B. Novales; M.A. Axelos Effect of protein aggregates on foaming properties of β-lactoglobulin, Colloids Surf. A, Physicochem. Eng. Asp., Volume 330 (2008) no. 2, pp. 96-102

[81] I. Schmidt et al. Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale, J. Colloid Interface Sci., Volume 345 (2010) no. 2, pp. 316-324

[82] B. Rullier et al. β-Lactoglobulin aggregates in foam films: correlation between foam films and foaming properties, J. Colloid Interface Sci., Volume 336 (2009) no. 2, pp. 750-755

[83] B. Rullier et al. β-Lactoglobulin aggregates in foam films: effect of the concentration and size of the protein aggregates, J. Colloid Interface Sci., Volume 343 (2010) no. 1, pp. 330-337

[84] R. Zuniga et al. Kinetics of formation and physicochemical characterization of thermally-induced β-lactoglobulin aggregates, J. Food Sci., Volume 75 (2010) no. 5, p. E261-E268

[85] P.A. Wierenga; E.S. Basheva; N.D. Denkov Modified capillary cell for foam film studies allowing exchange of the film-forming liquid, Langmuir, Volume 25 (2009) no. 11, pp. 6035-6039

[86] R.A. Ganzevles et al. Modulating surface rheology by electrostatic protein/polysaccharide interactions, Langmuir, Volume 22 (2006) no. 24, pp. 10089-10096

[87] R.A. Ganzevles et al. Structure of mixed β-lactoglobulin/pectin adsorbed layers at air/water interfaces, a spectroscopy study, J. Colloid Interface Sci., Volume 317 (2008) no. 1, pp. 137-147

[88] C. Schmitt et al. Effect of time on the interfacial and foaming properties of β-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2, Langmuir, Volume 21 (2005) no. 17, pp. 7786-7795

[89] N.-P.K. Humblet-Hua; E. van der Linden; L.M. Sagis Surface rheological properties of liquid–liquid interfaces stabilized by protein fibrillar aggregates and protein–polysaccharide complexes, Soft Matter, Volume 9 (2013) no. 7, pp. 2154-2165

[90] J.-M. Jung; D.Z. Gunes; R. Mezzenga Interfacial activity and interfacial shear rheology of native β-lactoglobulin monomers and their heat-induced fibers, Langmuir, Volume 26 (2010) no. 19, pp. 15366-15375

[91] E. Chevallier et al. Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant, Langmuir, Volume 28 (2012) no. 5, pp. 2308-2312

[92] E. Chevallier et al. Light induced flows opposing drainage in foams and thin-films using photosurfactants, Soft Matter, Volume 9 (2013) no. 29, pp. 7054-7060

[93] A. Salonen; D. Langevin; P. Perrin Light and temperature bi-responsive emulsion foams, Soft Matter, Volume 6 (2010) no. 21, pp. 5308-5311

[94] S. Lam et al. Magnetically responsive pickering foams, J. Amer. Chem. Soc., Volume 133 (2011) no. 35, pp. 13856-13859

[95] A.R. Patel et al. Stable and temperature-responsive surfactant-free foamulsions with high oil-volume fraction, ChemPhysChem, Volume 13 (2012) no. 17, pp. 3777-3781

[96] F. Schüler et al. Synthesis of macroporous polystyrene by the polymerization of foamed emulsions, Angew. Chem., Int. Ed. Engl., Volume 51 (2012) no. 9, pp. 2213-2217

Cited by Sources:

Comments - Policy