Comptes Rendus
Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof
[Émulsions de Pickering stabilisées par des particules colloïdales et matériaux dérivés]
Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 761-774.

Les émulsions stabilisées par des particules colloïdales, aussi appelées émulsions de Pickering, présentent une très grande diversité résultant de la grande variété de particules actuellement disponibles. Des particules d'origine naturelle ou synthétique, des particules sphériques rigides, de formes irrégulières ou très déformables peuvent toutes stabiliser des émulsions. Nous proposons dans cet article d'illustrer cette diversité, mais aussi de mettre en exergue leurs propriétés communes. Nous identifions les questions, qui, à notre avis, restent encore sans réponse et qui mériteraient que la communauté consacre des efforts supplémentaires dans un proche futur. Nous donnons des exemples de matériaux originaux élaborés à partir d'émulsions de Pickering.

Solid stabilized emulsions, also referred to as Pickering emulsions, are very diverse owing to the large variety of available colloidal particles from naturally occurring to synthesized ones, from hard to very deformable ones and from spheres to more complex shaped particles. Here we illustrate this variety and, despite this huge diversity, we aim at highlighting the common features. We discuss next the remaining open questions that, in our point of view, should sustain special efforts in the future and we illustrate elaboration of original materials based on Pickering emulsions.

Publié le :
DOI : 10.1016/j.crhy.2014.09.010
Keywords: Pickering emulsions, Particle adsorption, Limited coalescence, Stimuli-responsive
Mot clés : Émulsions de Pickering, Adsorption de particules, Coalescence limitée, Stimulable
Véronique Schmitt 1 ; Mathieu Destribats 1 ; Rénal Backov 1

1 Centre de recherche Paul-Pascal, Université de Bordeaux, UPR CNRS 8641, 115, av. Dr-Albert-Schweitzer, 33600 Pessac, France
@article{CRPHYS_2014__15_8-9_761_0,
     author = {V\'eronique Schmitt and Mathieu Destribats and R\'enal Backov},
     title = {Colloidal particles as liquid dispersion stabilizer: {Pickering} emulsions and materials thereof},
     journal = {Comptes Rendus. Physique},
     pages = {761--774},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.09.010},
     language = {en},
}
TY  - JOUR
AU  - Véronique Schmitt
AU  - Mathieu Destribats
AU  - Rénal Backov
TI  - Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 761
EP  - 774
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.09.010
LA  - en
ID  - CRPHYS_2014__15_8-9_761_0
ER  - 
%0 Journal Article
%A Véronique Schmitt
%A Mathieu Destribats
%A Rénal Backov
%T Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof
%J Comptes Rendus. Physique
%D 2014
%P 761-774
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.09.010
%G en
%F CRPHYS_2014__15_8-9_761_0
Véronique Schmitt; Mathieu Destribats; Rénal Backov. Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof. Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 761-774. doi : 10.1016/j.crhy.2014.09.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.09.010/

[1] F. Leal-Calderon; V. Schmitt; J. Bibette Emulsion Science. Basic Principles, Springer, 2007

[2] S.U. Pickering CXCVI. – Emulsions, J. Chem. Soc., Trans., Volume 91 (1907), p. 2001

[3] W. Ramsden Proc. Royal Soc., 72 (1903), p. 156

[4] K. Larson-Smith; A. Jackson; D.C. Pozzo SANS and SAXS analysis of charged nanoparticle adsorption at oil–water interfaces, Langmuir, Volume 28 (2012), p. 2493

[5] K. Du; E. Glogowski; T. Emrick; T.P. Russell; A.D. Dinsmore Adsorption energy of nano- and microparticles at liquid–liquid interfaces, Langmuir, Volume 26 (2010), p. 12518

[6] K. Golemanov; S. Tcholakova; P.A. Kralchevsky; K.P. Ananthapadmanabhan; A. Lips Latex-particle-stabilized emulsions of anti-Bancroft type, Langmuir, Volume 22 (2006), p. 4968

[7] S. Levine; B.D. Bowen Capillary interaction of spherical particles adsorbed on the surface of an oil/water droplet stabilized by the particles. Part I, Colloids Surf., Volume 59 (1991), p. 377

[8] S. Levine; B.D. Bowen Capillary interaction of spherical particles adsorbed on the surface of an oil/water droplet stabilized by the particles. Part II, Colloids Surf., Volume 65 (1992), p. 273

[9] S. Levine; B.D. Bowen Capillary interaction of spherical particles adsorbed on the surface of an oil/water droplet stabilized by the particles. 3. Effective interfacial tension, Colloids Surf. A, Physicochem. Eng. Asp., Volume 70 (1993), p. 33

[10] R. Aveyard; B.P. Binks; J.H. Clint Emulsions stabilised solely by colloidal particles, Adv. Colloid Interface Sci., Volume 100–102 (2003), p. 503

[11] S. Abend; N. Bonnke; U. Gutschner; G. Lagaly Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides, Colloid Polym. Sci., Volume 276 (1998), p. 730

[12] B.P. Binks; J.H. Clint; G. Mackenzie; C. Simcock; C.P. Whitby Naturally occurring spore particles at planar fluid interfaces and in emulsions, Langmuir, Volume 21 (2005), p. 8161

[13] M.L. Brandy; O.J. Cayre; R.F. Fakhrullin; O.D. Velev; V.N. Paunov Directed assembly of yeast cells into living yeastosomes by microbubble templating, Soft Matter, Volume 6 (2010), p. 3494

[14] J.T. Russell; Y. Lin; A. Böker; L. Su; P. Carl; H. Zettl; J. He; K. Sill; R. Tangirala; T. Emrick; K. Littrell; P. Thiyagarajan; D. Cookson; A. Fery; Q. Wang; T.P. Russell Self-assembly and cross-linking of bionanoparticles at liquid–liquid interfaces, Angew. Chem., Int. Ed., Volume 44 (2005), p. 2420

[15] M. Destribats; S. Ravaine; V. Heroguez; F. Leal-Calderon; V. Schmitt Outstanding stability of poorly-protected Pickering emulsions, Prog. Colloid & Polym. Sci., Volume 137 (2010), p. 13

[16] J.W.J. De Folter; E.M. Hutter; S.I.R. Castillo; K.E. Klop; A.P. Philipse; W.K. Kegel Particle shape anisotropy in Pickering emulsions: cubes and peanuts, Langmuir, Volume 30 (2014), p. 955

[17] S. Arditty; C.P. Whitby; B.P. Binks; V. Schmitt; F. Leal-Calderon Some general features of limited coalescence in solid-stabilized emulsions, Eur. Phys. J. E, Soft Matter, Volume 11 (2003), p. 273

[18] B.P. Binks; P.D.I. Fletcher; B.L. Holt; J. Parker; P. Beaussoubre; K. Wong Drop sizes and particle coverage in emulsions stabilised solely by silica nanoparticles of irregular shape, Phys. Chem. Chem. Phys., Volume 12 (2010), p. 11967

[19] S. Reculusa; S. Ravaine Synthesis of colloidal crystals of controllable thickness through the Langmuir–Blodgett technique, Chem. Mater., Volume 15 (2003), p. 598

[20] W.P. Hsu; Q. Zhong; E. Matijevic The formation of uniform colloidal particles of magnesium fluoride and sodium magnesium fluoride, J. Colloid Interface Sci., Volume 181 (1996), p. 142

[21] T. Sugimoto; Y. Wang Mechanism of the shape and structure control of monodispersed α-Fe2O3 particles by sulfate ions, J. Colloid Interface Sci., Volume 207 (1998), p. 137

[22] W. Richtering Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-Pickering properties, Langmuir, Volume 28 (2012), p. 17218

[23] V. Schmitt; V. Ravaine Surface compaction versus stretching in Pickering emulsions stabilised by microgels, Curr. Opin. Colloid Interface Sci., Volume 18 (2013), p. 532

[24] F. Gautier; M. Destribats; R. Perrier-Cornet; J.F. Dechézelles; J. Giermanska; V. Héroguez; S. Ravaine; F. Leal-Calderon; V. Schmitt Pickering emulsions with stimulable particles: from highly-to weakly-covered interfaces, Phys. Chem. Chem. Phys., Volume 9 (2007), p. 6455

[25] A. Menner; R. Verdejo; M. Shaffer; A. Bismarck Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials: poly-Pickering-foams, Langmuir, Volume 23 (2007), p. 2398

[26] W. Chen; X. Liu; Y. Liu; Y. Bang; H.I. Kim Preparation of O/W Pickering emulsion with oxygen plasma treated carbon nanotubes as surfactants, J. Ind. Eng. Chem., Volume 17 (2011), p. 455

[27] A.H. Bornaee; M. Manteghian; A. Rashidi; M. Alaei; M. Ershadi Oil-in-water Pickering emulsions stabilized with functionalized multi-walled carbon nanotube/silica nanohybrids in the presence of high concentrations of cations in water, J. Ind. Eng. Chem., Volume 20 (2014), p. 1720

[28] I. Capron; B. Cathala Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals, Biomacromolecules, Volume 14 (2013), p. 291

[29] I. Kalashnikova; H. Bizot; P. Bertoncini; B. Cathala; I. Capron Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions, Soft Matter, Volume 9 (2013), p. 952

[30] I. Kalashnikova; H. Bizot; B. Cathala; I. Capron Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface, Biomacromolecules, Volume 13 (2012), p. 267

[31] L. Nilsson; B. Bergenståhl Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification, Langmuir, Volume 22 (2006), p. 8770

[32] L. Nilsson; B. Bergenståhl Emulsification and adsorption properties of hydrophobically modified potato and barley starch, J. Agric. Food Chem., Volume 55 (2007), p. 1469

[33] J. Giermanska-Kahn; V. Laine; S. Arditty; V. Schmitt; F. Leal-Calderon Particle-stabilized emulsions comprised of solid droplets, Langmuir, Volume 21 (2005), p. 4316

[34] Z.M. Gao; X.Q. Yang; N.N. Wu; L.J. Wang; J.M. Wang; J. Guo; S.W. Yin Protein-based Pickering emulsion and oil gel prepared by complexes of zein colloidal particles and stearate, J. Agric. Food Chem., Volume 62 (2014), p. 2672

[35] H.N. Liang; C.h. Tang Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0, LWT – Food Sci. Technol., Volume 58 (2014) no. 2, p. 463

[36] F. Liu; C.H. Tang Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions, J. Agric. Food Chem., Volume 61 (2013), p. 8888

[37] F. Liu; C.H. Tang Emulsifying properties of soy protein nanoparticles: influence of the protein concentration and/or emulsification process, J. Agric. Food Chem., Volume 62 (2014), p. 2644

[38] M. Destribats; M. Rouvet; C. Gehin-Delval; C. Schmitt; B.P. Binks Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions, Soft Matter, Volume 10 (2014), p. 6941

[39] B.P. Binks; J.H. Clint; A.K.F. Dyab; P.D.I. Fletcher; M. Kirkland; C.P. Whitby Ellipsometric study of monodisperse silica particles at an oil–water interface, Langmuir, Volume 19 (2003), p. 8888

[40] D. Zang; A. Stocco; D. Langevin; B. Wei; B.P. Binks An ellipsometry study of silica nanoparticle layers at the water surface, Phys. Chem. Chem. Phys., Volume 11 (2009), p. 9522

[41] A. Deák; E. Hild; A.L. Kovács; Z. Hórvölgyi Contact angle determination of nanoparticles: film balance and scanning angle reflectometry studies, Phys. Chem. Chem. Phys., Volume 9 (2007), p. 6359

[42] E. Hild; T. Seszták; D. Völgyes; Z. Hórvölgyi Characterization of silica nanoparticulate layers with scanning angle reflectometry, Progr. Colloid & Polym. Sci., Volume 125 (2004), p. 61

[43] J.H. Clint; S.E. Taylor Particle size and interparticle forces of overbased detergents: a Langmuir trough study, Colloids Surf., Volume 65 (1992), p. 61

[44] D.O. Grigoriev; J. Krägel; V. Dutschk; R. Miller; H. Möhwald Contact angle determination of micro- and nanoparticles at fluid/fluid interfaces: the excluded area concept, Phys. Chem. Chem. Phys., Volume 9 (2007), p. 6447

[45] D.O. Grigoriev; H. Möhwald; D.G. Shchukin Theoretical evaluation of nano- or microparticulate contact angle at fluid/fluid interfaces: analysis of the excluded area behavior upon compression, Phys. Chem. Chem. Phys., Volume 10 (2008), p. 1975

[46] M. Preuss; H.J. Butt Measuring the contact angle of individual colloidal particles, J. Colloid Interface Sci., Volume 208 (1998), p. 468

[47] G.E. Yakubov; O.I. Vinogradova; H.J. Butt Contact angles on hydrophobic microparticles at water–air and water–hexadecane interfaces, J. Adhes. Sci. Technol., Volume 14 (2000), p. 1783

[48] A. Hadjiiski; R. Dimova; N.D. Denkov; I.B. Ivanov; R. Borwankar Film trapping technique: precise method for three-phase contact angle determination of solid and fluid particles of micrometer size, Langmuir, Volume 12 (1996), p. 6665

[49] T.S. Horozov; D.A. Braz; P.D.I. Fletcher; B.P. Binks; J.H. Clint Novel film-calliper method of measuring the contact angle of colloidal particles at liquid interfaces, Langmuir, Volume 24 (2008), p. 1678

[50] L. Isa; F. Lucas; R. Wepf; E. Reimhult Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy, Nat. Commun., Volume 2 (2011), p. 438

[51] S. Coertjens; P. Moldenaers; J. Vermant; L. Isa Contact angles of microellipsoids at fluid interfaces, Langmuir, Volume 30 (2014), p. 4289

[52] V.N. Paunov Novel method for determining the three-phase contact angle of colloid particles adsorbed at air–water and oil–water interfaces, Langmuir, Volume 19 (2003), p. 7970

[53] B.P. Binks Particles as surfactants – similarities and differences, Curr. Opin. Colloid Interface Sci., Volume 7 (2002), p. 21

[54] M. Destribats; S. Gineste; E. Laurichesse; H. Tanner; F. Leal-Calderon; V. Héroguez; V. Schmitt Pickering emulsions: what are the main parameters determining the emulsion type and interfacial properties?, Langmuir, Volume 30 (2014), p. 9313 | DOI

[55] W.D. Bancroft The theory of emulsification, VI, J. Phys. Chem., Volume 19 (1915), p. 275

[56] P. Finkle; H.D. Draper; J.H. Hildebrand The theory of emulsification, J. Am. Chem. Soc., Volume 45 (1923), p. 2780

[57] T.H. Whitesides; D.S. Ross Experimental and theoretical analysis of the limited coalescence process: stepwise limited coalescence, J. Colloid Interface Sci., Volume 169 (1995), p. 48

[58] S. Arditty; V. Schmitt; J. Giermanska-Kahn; F. Leal-Calderon Materials based on solid-stabilized emulsions, J. Colloid Interface Sci., Volume 275 (2004), p. 659

[59] R. Aveyard; B.P. Binks; J.H. Clint; P.D.I. Fletcher; T.S. Horozov; B. Neumann; V.N. Paunov; J. Annesley; S.W. Botchway; D. Nees; A.W. Parker; A.D. Ward; A.N. Burgess Measurement of long-range repulsive forces between charged particles at an oil–water interface, Phys. Rev. Lett., Volume 88 (2002), p. 2461021

[60] T.S. Horozov; R. Aveyard; J.H. Clint; B.P. Binks Order–disorder transition in monolayers of modified monodisperse silica particles at the octane–water interface, Langmuir, Volume 19 (2003), p. 2822

[61] S. Arditty; V. Schmitt; F. Lequeux; F. Leal-Calderon Interfacial properties in solid-stabilized emulsions, Eur. Phys. J. B, Volume 44 (2005), p. 381

[62] M. Destribats; V. Lapeyre; E. Sellier; F. Leal-Calderon; V. Ravaine; V. Schmitt Origin and control of adhesion between emulsion drops stabilized by thermally sensitive soft colloidal particles, Langmuir, Volume 28 (2012), p. 3744

[63] V. Trappe; V. Prasad; L. Cipelletti; P.N. Segre; D.A. Weitz Jamming phase diagram for attractive particles, Nature, Volume 411 (2001), p. 772

[64] S. Melle; M. Lask; G.G. Fuller Pickering emulsions with controllable stability, Langmuir, Volume 21 (2005), p. 2158

[65] A.J. Morse; S.P. Armes; K.L. Thompson; D. Dupin; L.A. Fielding; P. Mills; R. Swart Novel Pickering emulsifiers based on pH-responsive poly(2-(diethylamino) ethyl methacrylate) latexes, Langmuir, Volume 29 (2013), p. 5466

[66] A.J. Morse; D. Dupin; K.L. Thompson; S.P. Armes; K. Ouzineb; P. Mills; R. Swart Novel Pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes, Langmuir, Volume 28 (2012), p. 11733

[67] Q. Gao; C. Wang; H. Liu; C. Wang; X. Liu; Z. Tong Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures, Polymer, Volume 50 (2009), p. 2587

[68] B. Brugger; W. Richtering Magnetic thermosensitive microgels as stimuli-responsive emulsifiers allowing for remote control of separability and stability of oil in water-emulsions, Adv. Mater., Volume 19 (2007), p. 2973

[69] B. Brugger; W. Richtering Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers, Langmuir, Volume 24 (2008), p. 7769

[70] B. Brugger; B.A. Rosen; W. Richtering Microgels as stimuli-responsive stabilizers for emulsions, Langmuir, Volume 24 (2008), p. 12202

[71] H. Liu; C. Wang; Q. Gao; J. Chen; X. Liu; Z. Tong One-pot fabrication of magnetic nanocomposite microcapsules, Mater. Lett., Volume 63 (2009), p. 884

[72] M. Destribats; V. Lapeyre; M. Wolfs; E. Sellier; F. Leal-Calderon; V. Ravaine; V. Schmitt Soft microgels as Pickering emulsion stabilisers: role of particle deformability, Soft Matter, Volume 7 (2011), p. 7689

[73] M. Destribats; M. Wolfs; F. Pinaud; V. Lapeyre; E. Sellier; V. Schmitt; V. Ravaine Pickering emulsions stabilized by soft microgels: influence of the emulsification process on particle interfacial organization and emulsion properties, Langmuir, Volume 29 (2013), p. 12367

[74] M. Destribats; M. Eyharts; V. Lapeyre; E. Sellier; I. Varga; V. Ravaine; V. Schmitt Impact of pNIPAM microgel size on its ability to stabilize Pickering emulsions, Langmuir, Volume 30 (2014), p. 1768

[75] M. Destribats; V. Lapeyre; E. Sellier; F. Leal-Calderon; V. Schmitt; V. Ravaine Water-in-oil emulsions stabilized by water-dispersible poly(N-isopropylacrylamide) microgels: understanding anti-Finkle behavior, Langmuir, Volume 27 (2011), p. 14096

[76] M. Destribats; V. Schmitt; R. Backov Thermostimulable wax@SiO2 core–shell particles, Langmuir, Volume 26 (2010), p. 1734

[77] V. Schmitt, M. Destribats, R. Backov, Patent Core-shell material, M. F. P. S., and use thereof for the thermostimulated generation of substances of interest FR20090055417 20090731, FR09-55417 (2009).

[78] M. Depardieu; M. Nollet; M. Destribats; V. Schmitt; R. Backov Thermo-stimulable wax@water@SiO2 multicore-shell capsules, Part. Part. Syst. Charact., Volume 30 (2013), p. 185

[79] M. Nollet; M. Depardieu; M. Destribats; R. Backov; V. Schmitt Thermo-responsive multi-cargo core shell particles, Part. Part. Syst. Charact., Volume 30 (2013), p. 62

[80] V. Schmitt, M. Depardieu, M. Nollet, R. Backov, Patent FR12-55846 (2012).

[81] V. Schmitt, M. Nollet, M. Depardieu, R. Backov, Patent FR12-55844 (2012).

[82] N.R. Cameron; D.C. Sherrington; L. Albiston; D.P. Gregory Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHIPE materials by cryo-SEM, Colloid Polym. Sci., Volume 274 (1996), p. 592

[83] N.R. Cameron; D.C. Sherrington Synthesis and characterization of poly(aryl ether sulfone) polyHIPE materials, Macromolecules, Volume 30 (1997), p. 5860

[84] A. Menner; A. Bismarck New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure, Makromol. Chem., Macromol. Symp., Volume 242 (2006), p. 19

[85] A. Menner; R. Powell; A. Bismarck Open porous polymer foams via inverse emulsion polymerization: should the definition of high internal phase (ratio) emulsions be extended?, Macromolecules, Volume 39 (2006), p. 2034

[86] N. Brun; S. Ungureanu; H. Deleuze; R. Backov Hybrid foams, colloids and beyond: from design to applications, Chem. Soc. Rev., Volume 40 (2011), p. 771

[87] M. Destribats; B. Faure; M. Birot; O. Babot; V. Schmitt; R. Backov Tailored silica macrocellular foams: combining limited coalescence-based Pickering emulsion and sol–gel process, Adv. Funct. Mater., Volume 22 (2012), p. 2642

[88] V. Flexer; N. Brun; M. Destribats; R. Backov; N. Mano A novel three-dimensional macrocellular carbonaceous biofuel cell, Phys. Chem. Chem. Phys., Volume 15 (2013), p. 6437

[89] L. Hong; S. Jiang; S. Granick Simple method to produce Janus colloidal particles in large quantity, Langmuir, Volume 22 (2006), p. 9495

[90] A. Perro; F. Meunier; V. Schmitt; S. Ravaine Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions, Colloids Surf. A, Physicochem. Eng. Asp., Volume 332 (2009), p. 57

[91] D.R. Nelson Toward a tetravalent chemistry of colloids, Nano Lett., Volume 2 (2002), p. 1125

[92] H. Liang; A. Cacciuto; E. Luijter; S. Granick Clusters of charged Janus spheres, Nano Lett., Volume 6 (2006), p. 2510

[93] C.R. Iacovella; M.A. Horsch; Z. Zhang; S.C. Glotzer Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants, Langmuir, Volume 21 (2005), p. 9488

[94] Z. Zhang; A.S. Keys; T. Chen; S.C. Glotzer Self-assembly of patchy particles into diamond structures through molecular mimicry, Langmuir, Volume 21 (2005), p. 11547

[95] S. Reculusa; C. Mingotaud; E. Duguet; S. Ravaine Dekker Encyclopedia of Nanoscience and Nanotechnology (J.A. Schwartz; C.I. Contescu; K. Putyera, eds.), Marcel Dekker Inc., 2004, p. 943

[96] S. Fujii; Y. Yokoyama; Y. Miyanari; T. Shiono; M. Ito; S.I. Yusa; Y. Nakamura Micrometer-sized gold–silica Janus particles as particulate emulsifiers, Langmuir, Volume 29 (2013), p. 5457

[97] Aveyard; R. Can Janus particles give thermodynamically stable Pickering emulsions?, Soft Matter, Volume 8 (2012), p. 5233

[98] S. Jiang; S. Granick Janus balance of amphiphilic colloidal particles, J. Chem. Phys., Volume 127 (2007)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Integrative chemistry: Positioning chemical reactors within the geometric space as a tool for the design of advanced functional materials

Martin Depardieu; Maxime Nollet; Véronique Schmitt; ...

C. R. Chim (2016)


Effect of particles and aggregated structures on the foam stability and aging

Anne-Laure Fameau; Anniina Salonen

C. R. Phys (2014)


Particle size distribution in mini-emulsion polymerization

Katharina Landfester; F.Joseph Schork; Victor A. Kusuma

C. R. Chim (2003)