Comptes Rendus
Adsorption of soluble polymers at liquid interfaces and in foams
[Adsorption de polymères solubles aux interfaces liquides et dans les mousses]
Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 775-785.

Nous passons en revue des résultats de la littérature décrivant la structure et la dynamique de molécules polymères adsorbées aux interfaces liquides ainsi que leur comportement dans les mousses. La première partie décrit des résultats théoriques et expérimentaux concernant la structure et la dynamique de systèmes polymères modèles, c'est-à-dire des homopolymères et des copolymères. Dans une seconde partie, nous rapportons des résultats expérimentaux ayant trait à des mélanges de polymères et de surfactants qui sont couramment utilisés pour stabiliser les mousses. Dans de tels mélanges, les surfactants et les molécules polymères forment des complexes au sein de la solution et aux interfaces liquides, qui concourent à la stabilisation des mousses. Nous énumérons les paramètres physicochimiques qui influencent la dynamique de l'adsorption et les propriétés viscoélastiques des interfaces, ainsi que les propriétés moussantes de tels mélanges.

We review some results from the literature describing the structure and dynamics of polymer molecules adsorbed at liquid interfaces as well as their behavior in foams. The first part describes theoretical and experimental results concerning the structure and dynamics of model polymer systems, i.e. homopolymers and copolymers. In the second part, we review experimental results concerning mixtures of polymers and surfactants that are widely used to stabilize foams. In such mixtures, the surfactants and the polymer molecules form complexes in the bulk solution and at liquid interfaces which help stabilizing the foams. We review the physicochemical parameters that influence the adsorption dynamics and the viscoelastic properties of the interfaces as well as the foam properties of such mixtures.

Publié le :
DOI : 10.1016/j.crhy.2014.10.002
Keywords: Polymers, Foams, Interface, Surface rheology, Adsorption
Mot clés : Polymères, Mousses, Interface, Rhéologie interfaciale, Adsorption
Cécile Monteux 1, 2

1 École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Sciences et ingénierie de la matière molle, CNRS UMR 7615, 10, rue Vauquelin, 75231 Paris cedex 05, France
2 Sorbonne-Universités, UPMC (Université Paris-6), SIMM, 10, rue Vauquelin, 75231 Paris cedex 05, France
@article{CRPHYS_2014__15_8-9_775_0,
     author = {C\'ecile Monteux},
     title = {Adsorption of soluble polymers at liquid interfaces and in foams},
     journal = {Comptes Rendus. Physique},
     pages = {775--785},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.10.002},
     language = {en},
}
TY  - JOUR
AU  - Cécile Monteux
TI  - Adsorption of soluble polymers at liquid interfaces and in foams
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 775
EP  - 785
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.10.002
LA  - en
ID  - CRPHYS_2014__15_8-9_775_0
ER  - 
%0 Journal Article
%A Cécile Monteux
%T Adsorption of soluble polymers at liquid interfaces and in foams
%J Comptes Rendus. Physique
%D 2014
%P 775-785
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.10.002
%G en
%F CRPHYS_2014__15_8-9_775_0
Cécile Monteux. Adsorption of soluble polymers at liquid interfaces and in foams. Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 775-785. doi : 10.1016/j.crhy.2014.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.002/

[1] A.N. Semenov; J.-F. Joanny Structure of adsorbed polymer layers: loops and tails, Europhys. Lett., Volume 29 (1995), pp. 279-284

[2] F. Clément; A. Johner Adsorption of neutral polymers: loops and tails, C. R. Acad. Sci. Paris, Ser. IV Phys., Volume 1 (2000), pp. 1135-1142

[3] P.G. De Gennes Polymer solutions near an interface. Adsorption and depletion layers, Macromolecules, Volume 14 (1981), pp. 1637-1644

[4] Polymers at Interfaces, Chapman & Hall, 1993

[5] F. Monroy; F. Ortega; R.G. Rubio; M.G. Velarde Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces, Adv. Colloid Interface Sci., Volume 134–135 (2007), pp. 175-189

[6] F. Ravera; G. Loglio; V.I. Kovalchuk Interfacial dilational rheology by oscillating bubble/drop methods, Curr. Opin. Colloid Interface Sci., Volume 15 (2010), pp. 217-228

[7] M.H. Lee; D.H. Reich; K.J. Stebe; R.L. Leheny Combined passive and active microrheology study of protein-layer formation at an air–water interface, Langmuir, Volume 26 (2010), pp. 2650-2658

[8] A. Maestro et al. Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers, Soft Matter, Volume 7 (2011), p. 7761

[9] E. Bouchaud; M. Daoud Polymer adsorption: concentration effects, J. Phys., Volume 48 (1987), pp. 1991-2000

[10] J.M. Di Meglio et al. Study of the surface tension of polymer solutions: theory and experiments in theta solvent conditions, J. Phys., Volume 44 (1983), pp. 1035-1040

[11] M. Manghi; M. Aubouy Tensioactive properties of semidilute polymer solutions, Macromolecules, Volume 33 (2000), pp. 5721-5729

[12] B. Noskov; A. Akentiev; A.Y. Bilibin; I. Zorin; R. Miller Dilational surface viscoelasticity of polymer solutions, Adv. Colloid Interface Sci., Volume 104 (2003), pp. 245-271

[13] A. Johner; J.F. Joanny J. Phys. II, 1 (1991), pp. 181-194

[14] B. Jean; L.-T. Lee; B. Cabane; V. Bergeron Foam films from thermosensitive PNIPAM and SDS solutions, Langmuir, Volume 25 (2009), pp. 3966-3971

[15] C. Monteux et al. Shear surface rheology of poly(N-isopropylacrylamide) adsorbed layers at the air–water interface, Macromolecules, Volume 39 (2006), pp. 3408-3414

[16] L.T. Lee; B. Jean; A. Menelle Effect of temperature on the adsorption of poly(N-isopropylacrylamide) at the air-solution interface, Langmuir, Volume 15 (1999), pp. 3267-3272

[17] R.-M. Guillermic; A. Saint-Jalmes Dynamics of poly-nipam chains in competition with surfactants at liquid interfaces: from thermoresponsive interfacial rheology to foams, Soft Matter, Volume 9 (2013), p. 1344

[18] V. Aguié-Béghin; E. Leclerc; M. Daoud; R. Douillard Asymmetric multiblock copolymers at the gas–liquid interface: phase diagram and surface pressure, J. Colloid Interface Sci., Volume 214 (1999), pp. 143-155

[19] R. Douillard; M. Daoud; V. Aguié-Béghin Polymer thermodynamics of adsorbed protein layers, Curr. Opin. Colloid Interface Sci., Volume 8 (2003), pp. 380-386

[20] A. Hambardzumyan; V. Aguié-Béghin; M. Daoud; R. Douillard β-casein and symmetrical triblock copolymer (PEOPPOPEO and PPOPEOPPO) surface properties at the air–water interface, Langmuir, Volume 20 (2004), pp. 756-763

[21] E. Leclerc; M. Daoud Multiblock copolymers at interfaces: concentration and selectivity effects, Macromolecules, Volume 30 (1997), pp. 293-300

[22] C. Marques; J.F. Joanny; L. Leibler Adsorption of block copolymers in selective solvents, Macromolecules, Volume 21 (1988), pp. 1051-1059

[23] C.M. Marques; J.F. Joanny Adsorption of random copolymers, Macromolecules, Volume 23 (1990), pp. 268-276

[24] B.A. Noskov; S.-Y. Lin; G. Loglio; R.G. Rubio; R. Miller Dilational viscoelasticity of PEOPPOPEO triblock copolymer films at the air–water interface in the range of high surface pressures, Langmuir, Volume 22 (2006), pp. 2647-2652

[25] M.G. Muñoz; F. Monroy; F. Ortega; R.G. Rubio; D. Langevin Monolayers of symmetric triblock copolymers at the air–water interface. 2. Adsorption kinetics, Langmuir, Volume 16 (2000), pp. 1094-1101

[26] M.G. Muñoz; F. Monroy; F. Ortega; R.G. Rubio; D. Langevin Monolayers of symmetric triblock copolymers at the air–water interface. 1. Equilibrium properties, Langmuir, Volume 16 (2000), pp. 1083-1093

[27] S. Rivillon; M.G. Muñoz; F. Monroy; F. Ortega; R.G. Rubio Experimental study of the dynamic properties of monolayers of PSPEO block copolymers: the attractive monomer surface case, Macromolecules, Volume 36 (2003), pp. 4068-4077

[28] B.A. Noskov; A.V. Akentiev; R. Miller Dynamic properties of poly(styrene)–poly(ethylene oxide) diblock copolymer films at the air–water interface, J. Colloid Interface Sci., Volume 247 (2002), pp. 117-124

[29] A. Stocco; K. Tauer; S. Pispas; R. Sigel Dynamics of amphiphilic diblock copolymers at the air–water interface, J. Colloid Interface Sci., Volume 355 (2011), pp. 172-178

[30] C. Barentin; J.F. Joanny Surface pressure of adsorbed polymer layers. Effect of sticking chain ends, Langmuir, Volume 15 (1999), pp. 1802-1811

[31] C. Barentin; P. Muller; J.F. Joanny Polymer brushes formed by end-capped poly(ethylene oxide) (PEO) at the air–water interface, Macromolecules, Volume 31 (1998), pp. 2198-2211

[32] J. Wittmer; A. Johner; J.F. Joanny; K. Binder Chain desorption from a semidilute polymer brush: a Monte Carlo simulation, J. Chem. Phys., Volume 101 (1994), p. 4379

[33] H.E. Jorgensen; U.P. Strauss Exploratory studies on the surface activity of polysoaps, J. Phys. Chem., Volume 65 (1961), pp. 1873-1877

[34] R.G. Barraza; H.E. Ríos Surface properties of aqueous solutions of poly-(maleic acid-co-vinyl-n-alkyl) potassium salts, J. Colloid Interface Sci., Volume 209 (1999), pp. 261-263

[35] F. Millet; P. Perrin; M. Merlange; J.-J. Benattar Logarithmic adsorption of charged polymeric surfactants at the air–water interface, Langmuir, Volume 18 (2002), pp. 8824-8828

[36] F. Millet; J.-J. Benattar; P. Perrin Structures of free-standing vertical thin films of hydrophobically modified poly(sodium acrylate)s, Macromolecules, Volume 34 (2001), pp. 7076-7083

[37] F. Millet; J. Benattar; P. Perrin Vertical free-standing films of amphiphilic associating polyelectrolytes, Phys. Rev. E, Volume 60 (1999), pp. 2045-2050

[38] F. Millet et al. Adsorption of hydrophobically modified poly(acrylic acid) sodium salt at the air/water interface by combined surface tension and X-ray reflectivity measurements, Langmuir, Volume 15 (1999), pp. 2112-2119

[39] O. Théodoly; M. Jacquin; P. Muller; S. Chhun Adsorption kinetics of amphiphilic diblock copolymers: from kinetically frozen colloids to macrosurfactants, Langmuir, Volume 25 (2009), pp. 781-793

[40] C. Ligoure; L. Leibler Thermodynamics and kinetics of grafting end-functionalized polymers to an interface, J. Phys., Volume 51 (1990), pp. 1313-1328

[41] O. Théodoly; R. Ober; C.E. Williams Adsorption of hydrophobic polyelectrolytes at the air/water interface: conformational effect and history dependence, Eur. Phys. J. E, Volume 5 (2001), pp. 51-58

[42] C. Barentin; P. Muller; C. Ybert; J.-F. Joanny; J.-M. di Meglio Shear viscosity of polymer and surfactant monolayers, Eur. Phys. J. E, Volume 2 (2000), p. 153

[43] K. Khristov; B. Jachimska; K. Malysa; D. Exerowa ‘Static’ and steady-state foams from ABA triblock copolymers: influence of the type of foam films, Colloids Surf. A, Physicochem. Eng. Asp., Volume 186 (2001), pp. 93-101

[44] R. Sedev; G.H. Findenegg; D. Exerowa Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene)oxide triblock copolymers at the water/air interface and in foam films, Colloid Polym. Sci., Volume 278 (2000), pp. 119-123

[45] S. Guillot; D. McLoughlin; N. Jain; M. Delsanti; D. Langevin Polyelectrolyte surfactant complexes at interfaces and in bulk, J. Phys. Condens. Matter, Volume 15 (2003), p. S219-S224

[46] N. Plucktaveesak; A.J. Konop; R.H. Colby Viscosity of polyelectrolyte solutions with oppositely charged surfactant, J. Phys. Chem. B, Volume 107 (2003), pp. 8166-8171

[47] A. Svensson; L. Piculell; B. Cabane; P. Ilekti A new approach to the phase behavior of oppositely charged polymers and surfactants, J. Phys. Chem. B, Volume 106 (2002), pp. 1013-1018

[48] K. Thalberg; B. Lindman; G. Karlstroem Phase behavior of a system of cationic surfactant and anionic polyelectrolyte: the effect of salt, J. Phys. Chem., Volume 95 (1991), pp. 6004-6011

[49] E.D. Goddard Polymer/surfactant interaction: interfacial aspects, J. Colloid Interface Sci., Volume 256 (2002), pp. 228-235

[50] D. Langevin Polyelectrolyte and surfactant mixed solutions. Behavior at surfaces and in thin films, Adv. Colloid Interface Sci., Volume 89–90 (2001), pp. 467-484

[51] D. Langevin; F. Monroy Interfacial rheology of polyelectrolytes and polymer monolayers at the air–water interface, Curr. Opin. Colloid Interface Sci., Volume 15 (2010), pp. 283-293

[52] J. Penfold; R.K. Thomas; D.J.F. Taylor Polyelectrolyte/surfactant mixtures at the air–solution interface, Curr. Opin. Colloid Interface Sci., Volume 11 (2006), pp. 337-344

[53] B.A. Noskov Dilational surface rheology of polymer and polymer/surfactant solutions, Curr. Opin. Colloid Interface Sci., Volume 15 (2010), pp. 229-236

[54] E. Goddard; R. Hannan Cationic polymer/anionic surfactant interactions, J. Colloid Interface Sci., Volume 55 (1976), pp. 73-79

[55] A. Asnacios; D. Langevin; J.F. Argillier Mixed monolayers of cationic surfactants and anionic polymers at the air–water interface: surface tension and ellipsometry studies, Eur. Phys. J. B, Volume 5 (1998), pp. 905-911

[56] C. Monteux; C.E. Williams; J. Meunier; O. Anthony; V. Bergeron Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface: formation of interfacial gels, Langmuir, Volume 20 (2004), pp. 57-63

[57] C. Monteux; G.G. Fuller; V. Bergeron Shear and dilational surface rheology of oppositely charged polyelectrolyte/surfactant microgels adsorbed at the air–water interface. Influence on Foam Stability, J. Phys. Chem. B, Volume 108 (2004), pp. 16473-16482

[58] N.J. Jain; P.-A. Albouy; D. Langevin Study of adsorbed monolayers of a cationic surfactant and an anionic polyelectrolyte at the air–water interface, Langmuir, Volume 19 (2003), pp. 5680-5690

[59] G. Espinosa; D. Langevin Interfacial shear rheology of mixed polyelectrolyte–surfactant layers, Langmuir, Volume 25 (2009), pp. 12201-12207

[60] B.A. Noskov; G. Loglio; R. Miller Dilational surface visco-elasticity of polyelectrolyte/surfactant solutions: formation of heterogeneous adsorption layers, Adv. Colloid Interface Sci., Volume 168 (2011), pp. 179-197

[61] B.A. Noskov; G. Loglio; R. Miller Dilational viscoelasticity of polyelectolyte/surfactant adsorption films at the air/water interface: dodecyltrimethylammonium bromide and sodium poly(styrenesulfonate), J. Phys. Chem. B, Volume 108 (2004), pp. 18615-18622

[62] V. Bergeron; D. Langevin; A. Asnacios Thin-film forces in foam films containing anionic polyelectrolyte and charged surfactants, Langmuir, Volume 12 (1996), pp. 1550-1556

[63] E. Staples et al. Organization of polymer–surfactant mixtures at the air–water interface: sodium dodecyl sulfate and poly(dimethyldiallylammonium chloride), Langmuir, Volume 18 (2002), pp. 5147-5153

[64] D.J.F. Taylor; R.K. Thomas; J. Penfold The adsorption of oppositely charged polyelectrolyte/surfactant mixtures: neutron reflection from dodecyl trimethylammonium bromide and sodium poly(styrene sulfonate) at the air/water interface, Langmuir, Volume 18 (2002), pp. 4748-4757

[65] C. Monteux et al. Interfacial microgels formed by oppositely charged polyelectrolytes and surfactants. 1. Influence of polyelectrolyte molecular weight, Langmuir, Volume 20 (2004), pp. 5358-5366

[66] C. Monteux; C.E. Williams; V. Bergeron Interfacial microgels formed by oppositely charged polyelectrolytes and surfactants. Part 2. Influence of surfactant chain length and surfactant/polymer ratio, Langmuir, Volume 20 (2004), pp. 5367-5374

[67] H. Ritacco; P.-A. Albouy; A. Bhattacharyya; D. Langevin Influence of the polymer backbone rigidity on polyelectrolyte–surfactant complexes at the air/water interface, Phys. Chem. Chem. Phys., Volume 2 (2000), pp. 5243-5251

[68] C. Stubenrauch; P.-A. Albouy; R. Klitzing; D. Langevin Polymer/surfactant complexes at the water/air interface: a surface tension and X-ray reflectivity study, Langmuir, Volume 16 (2000), pp. 3206-3213

[69] N. Kristen-Hochrein; A. Laschewsky; R. Miller; R. von Klitzing Stability of foam films of oppositely charged polyelectrolyte/surfactant mixtures: effect of isoelectric point, J. Phys. Chem. B, Volume 115 (2011), pp. 14475-14483

[70] H. Fauser; R. von Klitzing Effect of polyelectrolytes on (de)stability of liquid foam films, Soft Matter, Volume 10 (2014), pp. 6903-6916

[71] B.A. Noskov; G. Loglio; R. Miller Dilational viscoelasticity of polyelectolyte/surfactant adsorption films at the air/water interface: dodecyltrimethylammonium bromide and sodium poly(styrenesulfonate), J. Phys. Chem. B, Volume 108 (2004), pp. 18615-18622

[72] R. Petkova; S. Tcholakova; N.D. Denkov Foaming and foam stability for mixed polymer–surfactant solutions: effects of surfactant type and polymer charge, Langmuir, Volume 28 (2012), pp. 4996-5009

[73] E.M. Freer; K.S. Yim; G.G. Fuller; C.J. Radke Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: comparison of shear and dilatation deformation, J. Phys. Chem. B, Volume 108 (2004), pp. 3835-3844

[74] M. Safouane; M. Durand; A. Saint Jalmes; D. Langevin; V. Bergeron Aqueous foam drainage. Role of the rheology of the foaming fluid, J. Phys. IV, Volume 11 (2001), pp. 275-280

[75] A. Testouri; C. Honorez; A. Barillec; D. Langevin; W. Drenckhan Highly structured foams from chitosan gels, Macromolecules, Volume 43 (2010), pp. 6166-6173

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Effect of particles and aggregated structures on the foam stability and aging

Anne-Laure Fameau; Anniina Salonen

C. R. Phys (2014)


Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

Dominique Langevin

C. R. Méca (2017)


Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof

Véronique Schmitt; Mathieu Destribats; Rénal Backov

C. R. Phys (2014)