Comptes Rendus
Towards a solid-state ring laser gyroscope
[Vers un gyrolaser à état solide]
Comptes Rendus. Physique, Volume 15 (2014) no. 10, pp. 841-850.

Nous décrivons dans cet article nos récents progrès vers la réalisation d'un gyrolaser à état solide. Dans ce dispositif, le problème de la compétition entre modes est résolu par un contrôle actif des pertes différentielles, et les effets non linéaires sont fortement atténués par la mise en vibration du milieu à gain. La dynamique d'un tel système est significativement différente de celle d'un gyrolaser à hélium–néon classique, en particulier à cause des résonances paramétriques qui surviennent lorsque la fréquence Sagnac est un multiple entier de la fréquence de vibration du cristal. Nous décrivons les principaux résultats expérimentaux et théoriques obtenus jusqu'ici et discutons les perspectives d'applications pratiques à court et moyen termes.

In this paper, we report our recent progress towards a solid-state ring laser gyroscope (RLG), where mode competition is circumvented by active control of differential losses, and nonlinear effects are mitigated by longitudinal vibration of the gain medium. The resulting dynamics is significantly different from that of a classical helium–neon RLG, owing in particular to parametric resonances that occur when the Sagnac frequency is an integer multiple of the crystal vibration frequency. We describe the main experimental and theoretical results obtained so far, and the prospects of practical applications in the near future.

Publié le :
DOI : 10.1016/j.crhy.2014.10.008
Mots clés : Ring laser gyroscope, Solid-state laser, Sagnac effect
Noad El Badaoui 1, 2 ; Bertrand Morbieu 1 ; Philippe Martin 2 ; Pierre Rouchon 2 ; Jean-Paul Pocholle 3 ; François Gutty 3 ; Gilles Feugnet 3 ; Sylvain Schwartz 3

1 Thales Avionics, 40, rue de la Brelandière, BP 128, 86101 Châtellerault, France
2 Centre Automatique et Systèmes, Mines ParisTech, PSL Research University, 60, boulevard Saint-Michel, 75272 Paris cedex 06, France
3 Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau, France
@article{CRPHYS_2014__15_10_841_0,
     author = {Noad El Badaoui and Bertrand Morbieu and Philippe Martin and Pierre Rouchon and Jean-Paul Pocholle and Fran\c{c}ois Gutty and Gilles Feugnet and Sylvain Schwartz},
     title = {Towards a solid-state ring laser gyroscope},
     journal = {Comptes Rendus. Physique},
     pages = {841--850},
     publisher = {Elsevier},
     volume = {15},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crhy.2014.10.008},
     language = {en},
}
TY  - JOUR
AU  - Noad El Badaoui
AU  - Bertrand Morbieu
AU  - Philippe Martin
AU  - Pierre Rouchon
AU  - Jean-Paul Pocholle
AU  - François Gutty
AU  - Gilles Feugnet
AU  - Sylvain Schwartz
TI  - Towards a solid-state ring laser gyroscope
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 841
EP  - 850
VL  - 15
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.10.008
LA  - en
ID  - CRPHYS_2014__15_10_841_0
ER  - 
%0 Journal Article
%A Noad El Badaoui
%A Bertrand Morbieu
%A Philippe Martin
%A Pierre Rouchon
%A Jean-Paul Pocholle
%A François Gutty
%A Gilles Feugnet
%A Sylvain Schwartz
%T Towards a solid-state ring laser gyroscope
%J Comptes Rendus. Physique
%D 2014
%P 841-850
%V 15
%N 10
%I Elsevier
%R 10.1016/j.crhy.2014.10.008
%G en
%F CRPHYS_2014__15_10_841_0
Noad El Badaoui; Bertrand Morbieu; Philippe Martin; Pierre Rouchon; Jean-Paul Pocholle; François Gutty; Gilles Feugnet; Sylvain Schwartz. Towards a solid-state ring laser gyroscope. Comptes Rendus. Physique, Volume 15 (2014) no. 10, pp. 841-850. doi : 10.1016/j.crhy.2014.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.008/

[1] G. Sagnac L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme, C. R. Acad. Sci. Paris, Volume 95 (1913), p. 708

[2] G. Sagnac Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe tournant, C. R. Acad. Sci. Paris, Volume 95 (1913), p. 1410

[3] W. Macek; D. Davis Rotation rate sensing with traveling-wave ring lasers, Appl. Phys. Lett., Volume 2 (1963) no. 3, p. 67

[4] C. Ciminelli; F. Dell'Olio; C.E. Campanella; M.N. Armenise Photonic technologies for angular velocity sensing, Adv. Opt. Photonics, Volume 2 (2010) no. 3, p. 370

[5] H. Ma; Z. He; K. Hotate Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro, J. Lightwave Technol., Volume 29 (2011) no. 1, p. 85

[6] H. Mao; H. Ma; Z. Jin Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique, Opt. Express, Volume 19 (2011) no. 5, p. 4632

[7] U. Leonhardt; P. Piwnicki Ultrahigh sensitivity of slow-light gyroscope, Phys. Rev. A, Volume 62 (2000), p. 055801

[8] A. Matsko; A. Savchenkov; V. Ilchenko; L. Maleki Optical gyroscope with whispering gallery mode optical cavities, Opt. Commun., Volume 233 (2004) no. 1, p. 107

[9] B.Z. Steinberg Rotating photonic crystals: a medium for compact optical gyroscopes, Phys. Rev. E, Volume 71 (2005) no. 5, p. 056621

[10] J. Scheuer; A. Yariv Sagnac effect in coupled-resonator slow-light waveguide structures, Phys. Rev. Lett., Volume 96 (2006), p. 053901

[11] B.Z. Steinberg; J. Scheuer; A. Boag Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity, J. Opt. Soc. Am. B, Volume 24 (2007) no. 5, p. 1216

[12] M.S. Shahriar; G.S. Pati; R. Tripathi; V. Gopal; M. Messall; K. Salit Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light, Phys. Rev. A, Volume 75 (2007), p. 053807

[13] M. Salit; G. Pati; K. Salit; M. Shahriar Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors, J. Mod. Opt., Volume 54 (2007) no. 16–17, p. 2425

[14] S. Schwartz; F. Goldfarb; F. Bretenaker Some considerations on slow-and fast-light gyros, Opt. Eng., Volume 53 (2014) no. 10, p. 102706

[15] H.K. Kim; M.J. Digonnet; G.S. Kino Air-core photonic-bandgap fiber-optic gyroscope, J. Lightwave Technol., Volume 24 (2006) no. 8, p. 3169

[16] G.A. Sanders; L.K. Strandjord; T. Qiu Hollow core fiber optic ring resonator for rotation sensing, Optical Fiber Sensors, Optical Society of America, 2006, p. ME6

[17] M.A. Terrel; M.J. Digonnet; S. Fan Resonant fiber optic gyroscope using an air-core fiber, J. Lightwave Technol., Volume 30 (2012) no. 7, p. 931

[18] K. Schreiber; T. Klügel; J.-P. Wells; R. Hurst; A. Gebauer How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope, Phys. Rev. Lett., Volume 107 (2011) no. 17, p. 173904

[19] F. Bosi; G. Cella; A. Di Virgilio; A. Ortolan; A. Porzio; S. Solimeno; M. Cerdonio; J. Zendri; M. Allegrini; J. Belfi et al. Measuring gravitomagnetic effects by a multi-ring-laser gyroscope, Phys. Rev. D, Volume 84 (2011) no. 12, p. 122002

[20] K. Schreiber; A. Gebauer; J.-P. Wells Long-term frequency stabilization of a 16 m2 ring laser gyroscope, Opt. Lett., Volume 37 (2012) no. 11, p. 1925

[21] C. Clivati; D. Calonico; G.A. Costanzo; A. Mura; M. Pizzocaro; F. Levi Large-area fiber-optic gyroscope on a multiplexed fiber network, Opt. Lett., Volume 38 (2013) no. 7, p. 1092

[22] W. Chow; J. Gea-Banacloche; L. Pedrotti; V. Sanders; W. Schleich; M. Scully The ring laser gyro, Rev. Mod. Phys., Volume 57 (1985) no. 1, p. 61

[23] H. Lefèvre The Fiber-Optic Gyroscope, Artech House, 1993

[24] J. Gea-Banacloche Passive versus active interferometers: why cavity losses make them equivalent, Phys. Rev. A, Volume 35 (1987) no. 6, p. 2518

[25] D.M. Shupe Thermally induced nonreciprocity in the fiber-optic interferometer, Appl. Opt., Volume 19 (1980) no. 5, p. 654

[26] J. Killpatrick The laser gyro, IEEE Spectr., Volume 4 (1967) no. 10, p. 44

[27] F. Aronowitz Fundamentals of the ring laser gyro, Optical Gyros and Their Application, NATO Research and Technology Organization, 1999 (Ch. 3)

[28] A. Dotsenko; E. Lariontsev Use of a feedback circuit for the improvement of the characteristics of a solid-state ring laser, Sov. J. Quantum Electron., Volume 14 (1984) no. 1, p. 117

[29] A. Dotsenko; L.S. Kornienko; N.V. Kravtsov; E. Lariontsev; O. Nanii; A. Shelaev Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser, Sov. J. Quantum Electron., Volume 16 (1986) no. 1, p. 58

[30] S. Schwartz; G. Feugnet; P. Bouyer; E. Lariontsev; A. Aspect; J.-P. Pocholle Mode-coupling control in resonant devices: application to solid-state ring lasers, Phys. Rev. Lett., Volume 97 (2006), p. 093902

[31] S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, Solid-state ring laser gyro with a mechanically activated gain medium, US Patent 7,589,841.

[32] S. Schwartz; F. Gutty; G. Feugnet; E. Loil; J.-P. Pocholle Solid-state ring laser gyro behaving like its helium–neon counterpart at low rotation rates, Opt. Lett., Volume 34 (2009) no. 24, p. 3884

[33] H. Danielmeyer; E. Turner Electro-optic elimination of spatial hole burning in lasers, Appl. Phys. Lett., Volume 17 (1970) no. 12, p. 519

[34] H. Danielmeyer; W. Nilsen Spontaneous single-frequency output from a spatially homogeneous Nd–YAG laser, Appl. Phys. Lett., Volume 16 (1969) no. 3, p. 124

[35] S. Schwartz; F. Gutty; G. Feugnet; P. Bouyer; J.-P. Pocholle Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope, Phys. Rev. Lett., Volume 100 (2008), p. 183901

[36] E.J. Post Sagnac effect, Rev. Mod. Phys., Volume 39 (1967) no. 2, p. 475

[37] H.R. Bilger; W.K. Stowell Light drag in a ring laser: an improved determination of the drag coefficient, Phys. Rev. A, Volume 16 (1977), p. 313

[38] S. Schwartz; G. Feugnet; E. Lariontsev; J.-P. Pocholle Oscillation regimes of a solid-state ring laser with active beat-note stabilization: from a chaotic device to a ring-laser gyroscope, Phys. Rev. A, Volume 76 (2007) no. 2, p. 023807

[39] J. Kevorkian; J. Cole Multiple Scale and Singular Perturbation Methods, Springer, 1996

[40] J. Sanders; F. Verhulst; J. Murdock Averaging Methods in Nonlinear Dynamical Systems, Springer, 2007

[41] S. Schwartz; F. Gutty; G. Feugnet; J.-P. Pocholle Performance evaluation of a solid-state ring laser gyro, Karlsruhe, Germany (2010)

[42] T. Dorschner; H. Haus; M. Holz; I. Smith; H. Statz Laser gyro at quantum limit, IEEE J. Quantum Electron., Volume 16 (1980) no. 12, p. 1376

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The fiber-optic gyroscope, a century after Sagnac's experiment: The ultimate rotation-sensing technology?

Hervé C. Lefèvre

C. R. Phys (2014)


The centennial of the Sagnac experiment in the optical regime: From a tabletop experiment to the variation of the Earth's rotation

Karl Ulrich Schreiber; André Gebauer; Heiner Igel; ...

C. R. Phys (2014)


A ring lasers array for fundamental physics

Angela Di Virgilio; Maria Allegrini; Alessandro Beghi; ...

C. R. Phys (2014)