Comptes Rendus
The structure of powder snow avalanches
[Structure des avalanches en aérosol]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 97-104.

Les avalanches en aérosol peuvent atteindre plusieurs centaines de mètres de hauteur et dévaler à des vitesses étonnantes. Cette revue peint une image générique de ces avalanches à partir de données obtenues sur le site de la vallée de la Sionne, en Suisse. Ces données incluent l'épaisseur du manteau neigeux en fonction du temps, observée par un radar enfoui et, à plusieurs hauteurs sur un pylône, des pressions d'impact provenant de cellules de charge, des mesures de pression de l'air, des vitesses de particules par l'intermédiaire de capteurs optiques et, enfin, la densité de l'aérosol et la taille de ses amas, par une sonde à capacité. Les avalanches en aérosol comprennent des zones distinctes, avec stratification de la densité moyenne. À leur front, les pressions d'impact fluctuent, mais s'affaiblissent avec la hauteur, alors que les profils verticaux de vitesse évoluent rapidement le long de l'écoulement. Ceci suggère que des couches de neige légère, froide et sans cohésion font éruption en créant une région frontale turbulente, hétérogène et recirculante. Sur des centaines de mètres derrière le front, la stratification de l'aérosol s'accroît avec la déposition de particules suspendues. Un écoulement de surface à épaisseur croissante s'établit alors, tandis que des éléments plus chauds et plus profonds du manteau neigeux sont entraînés. Vers la queue de l'avalanche, les profils verticaux s'uniformisent, la pression d'impact et ses fluctuations diminuent, alors que l'écoulement s'affine et que l'érosion du manteau neigeux devient négligeable.

Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried Radar and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

Publié le :
DOI : 10.1016/j.crhy.2014.11.005
Keywords: Snow entrainment, Avalanche impact pressure, Avalanche velocity, Avalanche density, Mixed avalanches, Powder snow avalanches
Mot clés : Avalanches mixtes, Avalanches en aérosol
Betty Sovilla 1 ; Jim N. McElwaine 2 ; Michel Y. Louge 3

1 WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland
2 Department of Earth Sciences, Durham University, Durham DH1 3LE, United Kingdom
3 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, United States
@article{CRPHYS_2015__16_1_97_0,
     author = {Betty Sovilla and Jim N. McElwaine and Michel Y. Louge},
     title = {The structure of powder snow avalanches},
     journal = {Comptes Rendus. Physique},
     pages = {97--104},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2014.11.005},
     language = {en},
}
TY  - JOUR
AU  - Betty Sovilla
AU  - Jim N. McElwaine
AU  - Michel Y. Louge
TI  - The structure of powder snow avalanches
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 97
EP  - 104
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.11.005
LA  - en
ID  - CRPHYS_2015__16_1_97_0
ER  - 
%0 Journal Article
%A Betty Sovilla
%A Jim N. McElwaine
%A Michel Y. Louge
%T The structure of powder snow avalanches
%J Comptes Rendus. Physique
%D 2015
%P 97-104
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2014.11.005
%G en
%F CRPHYS_2015__16_1_97_0
Betty Sovilla; Jim N. McElwaine; Michel Y. Louge. The structure of powder snow avalanches. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 97-104. doi : 10.1016/j.crhy.2014.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.11.005/

[1] E. Hopfinger Snow avalanche motion and related phenomena, Annu. Rev. Fluid Mech., Volume 15 (1983), pp. 47-76

[2] C. Ancey Snow avalanches (N. Balmforth; A. Provenzale, eds.), Geomorphological Fluid Mechanics, Lect. Notes Phys., vol. 582, Springer, Berlin, Heidelberg, 2001, pp. 319-338 | DOI

[3] D. Issler Experimental information on the dynamics of dry-snow avalanches (K. Hutter; N. Kirchner, eds.), Dynamic Response of Granular and Porous Materials Under Large and Catastrophic Deformations, Lect. Notes Appl. Comput. Mech., vol. 11, Springer, Berlin, Germany, 2003, pp. 109-160

[4] E. Meiburg; J.N. McElwaine; B. Kneller Turbidity currents and powder snow avalanches (H. Fernando, ed.), Handbook of Environmental Fluid Dynamics, vol. 1, Taylor & Francis, 2012, pp. 557-573 | DOI

[5] J. Vallet; U. Gruber; F. Dufour Photogrammetric avalanche volume measurements at Vallée de la Sionne, Switzerland, Ann. Glaciol., Volume 32 (2001), pp. 141-146

[6] H. Gubler; M. Hiller The use of microwave FMCW radar in snow and avalanche research, Cold Reg. Sci. Technol., Volume 9 (1984), pp. 109-119

[7] L. Rammer; M. Kern; U. Gruber; F. Tiefenbacher Comparison of avalanche-velocity measurements by means of pulsed Doppler radar, continuous wave radar and optical methods, Cold Reg. Sci. Technol., Volume 50 (2007) no. 1–3, pp. 35-54 | DOI

[8] N.M. Vriend; J.N. McElwaine; B. Sovilla; C.J. Keylock; M. Ash; P.V. Brennan High-resolution radar measurements of snow avalanches, Geophys. Res. Lett., Volume 40 (2013), pp. 727-731

[9] B. Sovilla; M. Schaer; M. Kern; P. Bartelt Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site, J. Geophys. Res., Volume 113 (2008), p. F01010 | DOI

[10] S.S. Grigorian; N.A. Urumbiev; I.V. Nekrasov Data of geological studies, Volume 44 (1982), pp. 87-94 Academy of Sciences of the USSR Section of Glaciology of the Soviet Geophysical Committee and Institute of Geography (in Russian)

[11] B. Sovilla; P. Burlando; P. Bartelt Field experiments and numerical modeling of mass entrainment in snow avalanches, J. Geophys. Res., Volume 111 (2006), p. F03007 | DOI

[12] J.N. McElwaine; B. Turnbull Air pressure data from the Vallée de la Sionne avalanches of 2004, J. Geophys. Res., Volume 110 (2005), p. F03010 | DOI

[13] K. Nishimura; Y. Ito Velocity distribution in snow avalanches, J. Geophys. Res., Volume 102 (1997) no. B12, pp. 27297-27303 | DOI

[14] K. Nishimura; N. Maeno; F. Sandersen; K. Kristensen; H. Norem; K. Lied Observations of the dynamic structure of snow avalanches, Ann. Glaciol., Volume 18 (1993), pp. 313-316

[15] D.M. McClung; P.A. Schaerer Characteristics of flowing snow and avalanche impact pressures, Ann. Glaciol., Volume 6 (1985), pp. 9-14

[16] P. Gauer; D. Issler; K. Lied; K. Kristensen; H. Iwe; E. Lied; L. Rammer; H. Schreiber On full-scale avalanche measurements at the Ryggfonn test site, Cold Reg. Sci. Technol., Volume 49 (2007) no. 1, pp. 39-53

[17] H. Shimizu; T. Huzioka; E. Akitaya; H. Narita; M. Nakagawa; K. Kawada A study on high-speed avalanches in the Kurobe canyon, Japan, J. Glaciol., Volume 26 (1980) no. 94, pp. 141-151

[18] K. Nishimura; H. Narita; N. Maeno; K. Kawada The internal structure of powder-snow avalanches, Ann. Glaciol., Volume 13 (1989), pp. 207-210

[19] J.D. Dent; K.J. Burrell; D.S. Schmidt; M.Y. Louge; E. Adams; T.G. Jazbutis Density, velocity and friction measurements in a dry snow avalanche, Ann. Glaciol., Volume 26 (1998), pp. 247-252

[20] M.Y. Louge; R.L. Foster; N. Jensen; R. Patterson A portable capacitance snow sounding instrument, Cold Reg. Sci. Technol., Volume 28 (1998), pp. 73-81

[21] M. Schaer; D. Issler Particle densities, velocities and size distribution in large avalanches from impact-sensor measurements, Ann. Glaciol., Volume 32 (2001), pp. 321-327

[22] B. Sovilla; M. Schaer; L. Rammer Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne test site, Cold Reg. Sci. Technol., Volume 51 (2008), pp. 122-137 | DOI

[23] M.A. Kern; P. Bartelt; B. Sovilla; O. Buser Measured shear rates in large dry and wet snow avalanches, J. Glaciol., Volume 55 (2009) no. 190, pp. 327-338

[24] M.Y. Louge; R. Steiner; S. Keast; R. Decker; J. Dent; M. Schneebeli Application of capacitance instrumentation to the measurement of density and velocity of flowing snow, Cold Reg. Sci. Technol., Volume 25 (1997) no. 1, pp. 47-63

[25] B. Turnbull; J.N. McElwaine Experiments on the non-Boussinesq flow of self-igniting suspension currents on a steep open slope, J. Geophys. Res., Volume 113 (2008), p. F01003 | DOI

[26] K. Nishimura; F. Sandersen; K. Kristensen; K. Lied Measurements of powder snow avalanche – nature, Surv. Geophys., Volume 16 (1995), pp. 649-660

[27] L. Rammer; H. Schaffhauser; P. Sampl Computed powder avalanche impact pressures on a tunnel-bridge in Ausserfern – Tirol (K. Sassa, ed.), Environmental Forest Science. Proceedings of the IUFRO Division 8 Conference, Kluwer, Dordrecht, The Netherlands, 1998, pp. 599-605

[28] C. Carroll; M.Y. Louge; B. Turnbull Frontal dynamics of powder snow avalanches, J. Geophys. Res., Earth Surf., Volume 118 (2013), pp. 913-924

[29] M.Y. Louge; C.S. Carroll; B. Turnbull Role of pore pressure gradients in sustaining frontal particle entrainment in eruption currents: the case of powder snow avalanches, J. Geophys. Res., Volume 116 (2011) no. F4, p. F04030

[30] F. Naaim-Bouvet; M. Naaim; M. Bacher; L. Heiligenstein Physical modelling of the interaction between powder avalanches and defence structures, Nat. Hazards Earth Syst. Sci., Volume 2 (2002), pp. 193-202 | DOI

[31] M. Primus; F. Naaim-Bouvet; M. Naaim; T. Faug Physical modeling of the interaction between mounds or deflecting dams and powder snow avalanches, Cold Reg. Sci. Technol., Volume 39 (2004), pp. 257-267 | DOI

[32] P. Bartelt; B.W. McArdell Granulometric investigations of snow avalanches, J. Glaciol., Volume 55 (2009) no. 193, pp. 829-833

[33] J. Gray Particle size segregation in granular avalanches: a brief review of recent progress (J. Goddard; J.T. Jenkins; P. Giovine, eds.), AIP Conference Proceedings of IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, vol. 1227, 2010, pp. 343-362

[34] P. Gauer; D. Issler Possible erosion mechanisms in snow avalanches, Ann. Glaciol., Volume 38 (2004), pp. 384-392

[35] W. Steinkogler; B. Sovilla; M. Lehning Influence of snow cover properties on avalanche dynamics, Cold Reg. Sci. Technol., Volume 97 (2014), pp. 121-131

[36] D. Szabo; M. Schneebeli Subsecond sintering of ice, Appl. Phys. Lett., Volume 90 (2007) no. 15, p. 151916 | DOI

[37] C.S. Carroll; B. Turnbull; M.Y. Louge Role of fluid density in shaping eruption currents driven by frontal particle blow-out, Phys. Fluids, Volume 24 (2012), p. 066603

[38] M.Y. Louge The surprising relevance of a continuum description to granular clusters, J. Fluid Mech., Volume 742 (2014), pp. 1-4

[39] F. Tiefenbacher; M.A. Kern Experimental devices to determine snow avalanche basal friction and velocity profiles, Cold Reg. Sci. Technol., Volume 38 (2004) no. 1, pp. 17-30

[40] J.N. McElwaine; F. Tiefenbacher Calculating internal avalanche velocities from correlation with error analysis, Surv. Geophys., Volume 24 (2003) no. 5–6, pp. 499-524 | DOI

[41] B. Turnbull; J.N. McElwaine; C.J. Ancey The Kulikovskiy–Sveshnikova–Beghin model of powder snow avalanches: development and application, J. Geophys. Res., Volume 112 (2007), p. F0100 | DOI

[42] P. Beghin; X. Olagne Experimental and theoretical study of the dynamics of powder snow avalanches, Cold Reg. Sci. Technol., Volume 19 (1991), pp. 317-326

[43] C. Ancey Powder-snow avalanches: approximation as non-Boussinesq clouds with a Richardson number-dependent entrainment function, J. Geophys. Res., Volume 109 (2004), pp. 1-14

[44] B. Sovilla; J.N. McElwaine; M. Schaer; J. Vallet Variation of deposition depth with slope angle in snow avalanches: measurements from Vallée de la Sionne, J. Geophys. Res., Volume 115 (2010), p. F02016 | DOI

[45] J. Vallet; B. Turnbull; S. Joly; F. Dufour Observations on powder snow avalanches using videogrammetry, Cold Reg. Sci. Technol., Volume 39 (2004), pp. 153-159

[46] B. Turnbull; J.N. McElwaine A comparison of powder-snow avalanches at Vallée de la Sionne, Switzerland, with plume theories, J. Glaciol., Volume 53 (2007), pp. 30-40

[47] M.Y. Louge; B. Turnbull; C.S. Carroll Volume growth of a powder snow avalanche, Ann. Glaciol., Volume 53 (2012), pp. 57-60

[48] T.B. Benjamin Gravity currents and related phenomena, J. Fluid Mech., Volume 31 (1968), pp. 209-248

[49] J.E. Simpson; R.E. Britter The dynamics of the head of a gravity current advancing over a horizontal surface, J. Fluid Mech., Volume 94 (1978), pp. 447-495

[50] J.E. Simpson Gravity Currents in the Environment and the Laboratory, Cambridge University Press, Cambridge, UK, 1997

[51] F. Blanchette; M. Strauss; E. Meiburg; B. Kneller; M.E. Glinsky High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment, J. Geophys. Res., Volume 110 (2005), p. C12022

[52] P. Bebi; D. Kulakowski; C. Rixen Snow avalanche disturbances in forest ecosystems—state of research and implications for management, For. Ecol. Manag., Volume 257 (2009), pp. 1883-1892

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Modelling and simulation of powder-snow avalanches

Jocelyn Étienne; Marie Rastello; Emil J. Hopfinger

C. R. Méca (2006)


The dynamics of the snow avalanche affected areas in Piatra Mica mountains (Romania)

Anca Munteanu; Alexandru Nedelea; Laura Comanescu

C. R. Géos (2011)