Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried Radar and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.
Les avalanches en aérosol peuvent atteindre plusieurs centaines de mètres de hauteur et dévaler à des vitesses étonnantes. Cette revue peint une image générique de ces avalanches à partir de données obtenues sur le site de la vallée de la Sionne, en Suisse. Ces données incluent l'épaisseur du manteau neigeux en fonction du temps, observée par un radar enfoui et, à plusieurs hauteurs sur un pylône, des pressions d'impact provenant de cellules de charge, des mesures de pression de l'air, des vitesses de particules par l'intermédiaire de capteurs optiques et, enfin, la densité de l'aérosol et la taille de ses amas, par une sonde à capacité. Les avalanches en aérosol comprennent des zones distinctes, avec stratification de la densité moyenne. À leur front, les pressions d'impact fluctuent, mais s'affaiblissent avec la hauteur, alors que les profils verticaux de vitesse évoluent rapidement le long de l'écoulement. Ceci suggère que des couches de neige légère, froide et sans cohésion font éruption en créant une région frontale turbulente, hétérogène et recirculante. Sur des centaines de mètres derrière le front, la stratification de l'aérosol s'accroît avec la déposition de particules suspendues. Un écoulement de surface à épaisseur croissante s'établit alors, tandis que des éléments plus chauds et plus profonds du manteau neigeux sont entraînés. Vers la queue de l'avalanche, les profils verticaux s'uniformisent, la pression d'impact et ses fluctuations diminuent, alors que l'écoulement s'affine et que l'érosion du manteau neigeux devient négligeable.
Mots-clés : Avalanches mixtes, Avalanches en aérosol
Betty Sovilla 1; Jim N. McElwaine 2; Michel Y. Louge 3
@article{CRPHYS_2015__16_1_97_0, author = {Betty Sovilla and Jim N. McElwaine and Michel Y. Louge}, title = {The structure of powder snow avalanches}, journal = {Comptes Rendus. Physique}, pages = {97--104}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2014.11.005}, language = {en}, }
Betty Sovilla; Jim N. McElwaine; Michel Y. Louge. The structure of powder snow avalanches. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 97-104. doi : 10.1016/j.crhy.2014.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.11.005/
[1] Snow avalanche motion and related phenomena, Annu. Rev. Fluid Mech., Volume 15 (1983), pp. 47-76
[2] Snow avalanches (N. Balmforth; A. Provenzale, eds.), Geomorphological Fluid Mechanics, Lect. Notes Phys., vol. 582, Springer, Berlin, Heidelberg, 2001, pp. 319-338 | DOI
[3] Experimental information on the dynamics of dry-snow avalanches (K. Hutter; N. Kirchner, eds.), Dynamic Response of Granular and Porous Materials Under Large and Catastrophic Deformations, Lect. Notes Appl. Comput. Mech., vol. 11, Springer, Berlin, Germany, 2003, pp. 109-160
[4] Turbidity currents and powder snow avalanches (H. Fernando, ed.), Handbook of Environmental Fluid Dynamics, vol. 1, Taylor & Francis, 2012, pp. 557-573 | DOI
[5] Photogrammetric avalanche volume measurements at Vallée de la Sionne, Switzerland, Ann. Glaciol., Volume 32 (2001), pp. 141-146
[6] The use of microwave FMCW radar in snow and avalanche research, Cold Reg. Sci. Technol., Volume 9 (1984), pp. 109-119
[7] Comparison of avalanche-velocity measurements by means of pulsed Doppler radar, continuous wave radar and optical methods, Cold Reg. Sci. Technol., Volume 50 (2007) no. 1–3, pp. 35-54 | DOI
[8] High-resolution radar measurements of snow avalanches, Geophys. Res. Lett., Volume 40 (2013), pp. 727-731
[9] Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site, J. Geophys. Res., Volume 113 (2008), p. F01010 | DOI
[10] Data of geological studies, Volume 44 (1982), pp. 87-94 Academy of Sciences of the USSR Section of Glaciology of the Soviet Geophysical Committee and Institute of Geography (in Russian)
[11] Field experiments and numerical modeling of mass entrainment in snow avalanches, J. Geophys. Res., Volume 111 (2006), p. F03007 | DOI
[12] Air pressure data from the Vallée de la Sionne avalanches of 2004, J. Geophys. Res., Volume 110 (2005), p. F03010 | DOI
[13] Velocity distribution in snow avalanches, J. Geophys. Res., Volume 102 (1997) no. B12, pp. 27297-27303 | DOI
[14] Observations of the dynamic structure of snow avalanches, Ann. Glaciol., Volume 18 (1993), pp. 313-316
[15] Characteristics of flowing snow and avalanche impact pressures, Ann. Glaciol., Volume 6 (1985), pp. 9-14
[16] On full-scale avalanche measurements at the Ryggfonn test site, Cold Reg. Sci. Technol., Volume 49 (2007) no. 1, pp. 39-53
[17] A study on high-speed avalanches in the Kurobe canyon, Japan, J. Glaciol., Volume 26 (1980) no. 94, pp. 141-151
[18] The internal structure of powder-snow avalanches, Ann. Glaciol., Volume 13 (1989), pp. 207-210
[19] Density, velocity and friction measurements in a dry snow avalanche, Ann. Glaciol., Volume 26 (1998), pp. 247-252
[20] A portable capacitance snow sounding instrument, Cold Reg. Sci. Technol., Volume 28 (1998), pp. 73-81
[21] Particle densities, velocities and size distribution in large avalanches from impact-sensor measurements, Ann. Glaciol., Volume 32 (2001), pp. 321-327
[22] Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne test site, Cold Reg. Sci. Technol., Volume 51 (2008), pp. 122-137 | DOI
[23] Measured shear rates in large dry and wet snow avalanches, J. Glaciol., Volume 55 (2009) no. 190, pp. 327-338
[24] Application of capacitance instrumentation to the measurement of density and velocity of flowing snow, Cold Reg. Sci. Technol., Volume 25 (1997) no. 1, pp. 47-63
[25] Experiments on the non-Boussinesq flow of self-igniting suspension currents on a steep open slope, J. Geophys. Res., Volume 113 (2008), p. F01003 | DOI
[26] Measurements of powder snow avalanche – nature, Surv. Geophys., Volume 16 (1995), pp. 649-660
[27] Computed powder avalanche impact pressures on a tunnel-bridge in Ausserfern – Tirol (K. Sassa, ed.), Environmental Forest Science. Proceedings of the IUFRO Division 8 Conference, Kluwer, Dordrecht, The Netherlands, 1998, pp. 599-605
[28] Frontal dynamics of powder snow avalanches, J. Geophys. Res., Earth Surf., Volume 118 (2013), pp. 913-924
[29] Role of pore pressure gradients in sustaining frontal particle entrainment in eruption currents: the case of powder snow avalanches, J. Geophys. Res., Volume 116 (2011) no. F4, p. F04030
[30] Physical modelling of the interaction between powder avalanches and defence structures, Nat. Hazards Earth Syst. Sci., Volume 2 (2002), pp. 193-202 | DOI
[31] Physical modeling of the interaction between mounds or deflecting dams and powder snow avalanches, Cold Reg. Sci. Technol., Volume 39 (2004), pp. 257-267 | DOI
[32] Granulometric investigations of snow avalanches, J. Glaciol., Volume 55 (2009) no. 193, pp. 829-833
[33] Particle size segregation in granular avalanches: a brief review of recent progress (J. Goddard; J.T. Jenkins; P. Giovine, eds.), AIP Conference Proceedings of IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, vol. 1227, 2010, pp. 343-362
[34] Possible erosion mechanisms in snow avalanches, Ann. Glaciol., Volume 38 (2004), pp. 384-392
[35] Influence of snow cover properties on avalanche dynamics, Cold Reg. Sci. Technol., Volume 97 (2014), pp. 121-131
[36] Subsecond sintering of ice, Appl. Phys. Lett., Volume 90 (2007) no. 15, p. 151916 | DOI
[37] Role of fluid density in shaping eruption currents driven by frontal particle blow-out, Phys. Fluids, Volume 24 (2012), p. 066603
[38] The surprising relevance of a continuum description to granular clusters, J. Fluid Mech., Volume 742 (2014), pp. 1-4
[39] Experimental devices to determine snow avalanche basal friction and velocity profiles, Cold Reg. Sci. Technol., Volume 38 (2004) no. 1, pp. 17-30
[40] Calculating internal avalanche velocities from correlation with error analysis, Surv. Geophys., Volume 24 (2003) no. 5–6, pp. 499-524 | DOI
[41] The Kulikovskiy–Sveshnikova–Beghin model of powder snow avalanches: development and application, J. Geophys. Res., Volume 112 (2007), p. F0100 | DOI
[42] Experimental and theoretical study of the dynamics of powder snow avalanches, Cold Reg. Sci. Technol., Volume 19 (1991), pp. 317-326
[43] Powder-snow avalanches: approximation as non-Boussinesq clouds with a Richardson number-dependent entrainment function, J. Geophys. Res., Volume 109 (2004), pp. 1-14
[44] Variation of deposition depth with slope angle in snow avalanches: measurements from Vallée de la Sionne, J. Geophys. Res., Volume 115 (2010), p. F02016 | DOI
[45] Observations on powder snow avalanches using videogrammetry, Cold Reg. Sci. Technol., Volume 39 (2004), pp. 153-159
[46] A comparison of powder-snow avalanches at Vallée de la Sionne, Switzerland, with plume theories, J. Glaciol., Volume 53 (2007), pp. 30-40
[47] Volume growth of a powder snow avalanche, Ann. Glaciol., Volume 53 (2012), pp. 57-60
[48] Gravity currents and related phenomena, J. Fluid Mech., Volume 31 (1968), pp. 209-248
[49] The dynamics of the head of a gravity current advancing over a horizontal surface, J. Fluid Mech., Volume 94 (1978), pp. 447-495
[50] Gravity Currents in the Environment and the Laboratory, Cambridge University Press, Cambridge, UK, 1997
[51] High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment, J. Geophys. Res., Volume 110 (2005), p. C12022
[52] Snow avalanche disturbances in forest ecosystems—state of research and implications for management, For. Ecol. Manag., Volume 257 (2009), pp. 1883-1892
Cited by Sources:
Comments - Policy